2,540 research outputs found

    Single-Cell Analysis Reveals Unexpected Cellular Changes and Transposon Expression Signatures in the Colonic Epithelium of Treatment-Naive Adult Crohn's Disease Patients

    Get PDF
    BACKGROUND & AIMS: The intestinal barrier comprises a monolayer of specialized intestinal epithelial cells (IECs) that are critical in maintaining mucosal homeostasis. Dysfunction within various IEC fractions can alter intestinal permeability in a genetically susceptible host, resulting in a chronic and debilitating condition known as Crohn's disease (CD). Defining the molecular changes in each IEC type in CD will contribute to an improved understanding of the pathogenic processes and the identification of cell type-specific therapeutic targets. We performed, at single-cell resolution, a direct comparison of the colonic epithelial cellular and molecular landscape between treatment-nai¯ve adult CD and non-inflammatory bowel disease control patients. METHODS: Colonic epithelial-enriched, single-cell sequencing from treatment-nai¯ve adult CD and non-inflammatory bowel disease patients was investigated to identify disease-induced differences in IEC types. RESULTS: Our analysis showed that in CD patients there is a significant skew in the colonic epithelial cellular distribution away from canonical LGR5+ stem cells, located at the crypt bottom, and toward one specific subtype of mature colonocytes, located at the crypt top. Further analysis showed unique changes to gene expression programs in every major cell type, including a previously undescribed suppression in CD of most enteroendocrine driver genes as well as L-cell markers including GCG. We also dissect an incompletely understood SPIB+ cell cluster, revealing at least 4 subclusters that likely represent different stages of a maturational trajectory. One of these SPIB+ subclusters expresses crypt-top colonocyte markers and is up-regulated significantly in CD, whereas another subcluster strongly expresses and stains positive for lysozyme (albeit no other canonical Paneth cell marker), which surprisingly is greatly reduced in expression in CD. In addition, we also discovered transposable element markers of colonic epithelial cell types as well as transposable element families that are altered significantly in CD in a cell type-specific manner. Finally, through integration with data from genome-wide association studies, we show that genes implicated in CD risk show heretofore unknown cell type-specific patterns of aberrant expression in CD, providing unprecedented insight into the potential biological functions of these genes. CONCLUSIONS: Single-cell analysis shows a number of unexpected cellular and molecular features, including transposable element expression signatures, in the colonic epithelium of treatment-nai¯ve adult CD

    Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage

    Get PDF
    Objective: To quantify the structural characteristics and nanomechanical properties of aggrecan produced by adult bone marrow stromal cells (BMSCs) in peptide hydrogel scaffolds and compare to aggrecan from adult articular cartilage. Design: Adult equine BMSCs were encapsulated in 3D-peptide hydrogels and cultured for 21 days with TGF-β1 to induce chondrogenic differentiation. BMSC-aggrecan was extracted and compared with aggrecan from age-matched adult equine articular cartilage. Single molecules of aggrecan were visualized by atomic force microcopy-based imaging and aggrecan nanomechanical stiffness was quantified by high resolution force microscopy. Population-averaged measures of aggrecan hydrodynamic size, core protein structures and CS sulfation compositions were determined by size-exclusion chromatography, Western analysis, and fluorescence-assisted carbohydrate electrophoresis (FACE). Results: BMSC-aggrecan was primarily full-length while cartilage-aggrecan had many fragments. Single molecule measurements showed that core protein and GAG chains of BMSC-aggrecan were markedly longer than those of cartilage-aggrecan. Comparing full-length aggrecan of both species, BMSC-aggrecan had longer GAG chains, while the core protein trace lengths were similar. FACE analysis detected a ∼1:1 ratio of chondroitin-4-sulfate to chondroitin-6-sulfate in BMSC-GAG, a phenotype consistent with aggrecan from skeletally-immature cartilage. The nanomechanical stiffness of BMSC-aggrecan was demonstrably greater than that of cartilage-aggrecan at the same total sGAG (fixed charge) density. Conclusions: The higher proportion of full-length monomers, longer GAG chains and greater stiffness of the BMSC-aggrecan makes it biomechanically superior to adult cartilage-aggrecan. Aggrecan stiffness was not solely dependent on fixed charge density, but also on GAG molecular ultrastructure. These results support the use of adult BMSCs for cell-based cartilage repair.National Institutes of Health (U.S.) (NIH grant EB003805)National Institutes of Health (U.S.) (Grant AR33236)National Science Foundation (U.S.) (NSF grant NIRT-0403903)National Science Foundation (U.S.) (CMMI-0758651)National Institutes of Health (U.S.) (NIH Molecular, Cell, and Tissue Biomechanics Training Grant)Massachusetts Institute of Technology (Whitaker Health Science Fund Fellowship

    Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Engineering organs and tissues with the spatial composition and organisation of their native equivalents remains a major challenge. One approach to engineer such spatial complexity is to recapitulate the gradients in regulatory signals that during development and maturation are believed to drive spatial changes in stem cell differentiation. Mesenchymal stem cell (MSC) differentiation is known to be influenced by both soluble factors and mechanical cues present in the local microenvironment. The objective of this study was to engineer a cartilaginous tissue with a native zonal composition by modulating both the oxygen tension and mechanical environment thorough the depth of MSC seeded hydrogels. To this end, constructs were radially confined to half their thickness and subjected to dynamic compression (DC). Confinement reduced oxygen levels in the bottom of the construct and with the application of DC, increased strains across the top of the construct. These spatial changes correlated with increased glycosaminoglycan accumulation in the bottom of constructs, increased collagen accumulation in the top of constructs, and a suppression of hypertrophy and calcification throughout the construct. Matrix accumulation increased for higher hydrogel cell seeding densities; with DC further enhancing both glycosaminoglycan accumulation and construct stiffness. The combination of spatial confinement and DC was also found to increase proteoglycan-4 (lubricin) deposition toward the top surface of these tissues. In conclusion, by modulating the environment through the depth of developing constructs, it is possible to suppress MSC endochondral progression and to engineer tissues with zonal gradients mimicking certain aspects of articular cartilage.Funding was provided by Science Foundation Ireland (President of Ireland Young Researcher Award: 08/Y15/B1336) and the European Research Council (StemRepair – Project number 258463)

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Insight into the Stability of Cross-β Amyloid Fibril from VEALYL Short Peptide with Molecular Dynamics Simulation

    Get PDF
    Amyloid fibrils are found in many fatal neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, type II diabetes, and prion disease. The VEALYL short peptide from insulin has been confirmed to aggregate amyloid-like fibrils. However, the aggregation mechanism of amyloid fibril is poorly understood. Here, we utilized molecular dynamics simulation to analyse the stability of VEALYL hexamer. The statistical results indicate that hydrophobic residues play key roles in stabilizing VEALYL hexamer. Single point and two linkage mutants confirmed that Val1, Leu4, and Tyr5 of VEALYL are key residues. The consistency of the results for the VEALYL oligomer suggests that the intermediate states might be trimer (3-0) and pentamer(3-2). These results can help us to obtain an insight into the aggregation mechanism of amyloid fibril. These methods can be used to study the stability of amyloid fibril from other short peptides

    Influence of the quality implementation of a physical education curriculum on the physical development and physical fitness of children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was constructed as a comparison group pre-test/post-test quasi-experiment to assess the effect of the implementation of the PE curriculum by specialist PE teachers on children's physical development and physical fitness.</p> <p>Methods</p> <p>146 classes from 66 Slovenian primary schools were assigned to quasi-test (71) and quasi-control (75) groups. Data from the SLOFIT database was used to compare the differences in physical fitness and development between groups of children whose PE lessons were delivered by specialist PE teachers from the second grade onwards (quasi-test, n = 950) or by generalist teachers in all first three grades (quasi-control, n = 994). The Linear Mixed Model was used to test the influence of specialist PE teachers' teaching.</p> <p>Results</p> <p>The quasi-control group showed significantly lower improvement of physical fitness by -0.07 z-score units (95% CI -0.12 to 0.02) compared to the quasi-test group. A significant difference of -0.20 (-0.27 to -0.13) was observed in explosive strength, and of -0.15 (-0.23 to -0.08) in running speed, and in flexibility by -0.22 (-0.29 to -0.14). No significant differences in physical development were observed.</p> <p>Conclusions</p> <p>Specialist PE teachers were more successful than generalist teachers in achieving greater improvement of children's physical fitness, but no differences were observed in physical development of quasi-test and quasi-control group.</p

    Phenotypic and functional characterization of the CD6-ALCAM T-cell co-stimulatory pathway after allogeneic cell transplantation

    Get PDF
    CD6 is a co-stimulatory receptor expressed on T cells that binds activated leukocyte cell adhesion molecule (ALCAM), expressed on antigen presenting cells, epithelial and endothelial tissues. The CD6-ALCAM pathway plays an integral role in modulating T-cell activation, proliferation, and trafficking. In this study we examined expression of CD6 by reconstituting T cells in 95 patients after allogeneic cell transplantation and evaluated the effects of itolizumab, an anti- CD6 monoclonal antibody, on T-cell activation. CD6 T cells reconstituted early after transplant with CD4 regulatory T cells (Treg)-expressing lower levels of CD6 compared to conventional CD4 T cells (Tcon) and CD8 T cells. After onset of acute graft-versus-host disease (aGvHD), CD6 expression was further reduced in Treg and CD8 T cells compared to healthy donors, while no difference was observed for Tcon. ALCAM expression was highest in plasmacytoid dendritic cells (pDC), lowest in myeloid dendritic cells (mDC) and intermediate in monocytes and was generally increased after aGvHD onset. Itolizumab inhibited CD4 and CD8 T-cell activation and proliferation in preGvHD samples, but inhibition was less prominent in samples collected after aGvHD onset, especially for CD8 T cells. Functional studies showed that itolizumab did not mediate direct cytolytic activity or antibody-dependent cytotoxicity in vitro. However, itolizumab efficiently abrogated the costimulatory activity of ALCAM on T-cell proliferation, activation and maturation. Our results identify the CD6-ALCAM pathway as a potential target for aGvHD control and a phase I/II study using itolizumab as first line treatment in combination with steroids for patients with aGvHD is currently ongoing (clinicaltrials gov. Identifier: NCT03763318)
    corecore