61 research outputs found

    Cross-phyla protein annotation by structural prediction and alignment

    Get PDF
    Background Protein annotation is a major goal in molecular biology, yet experimentally determined knowledge is typically limited to a few model organisms. In non-model species, the sequence-based prediction of gene orthology can be used to infer protein identity; however, this approach loses predictive power at longer evolutionary distances. Here we propose a workflow for protein annotation using structural similarity, exploiting the fact that similar protein structures often reflect homology and are more conserved than protein sequences. Results We propose a workflow of openly available tools for the functional annotation of proteins via structural similarity (MorF: MorphologFinder) and use it to annotate the complete proteome of a sponge. Sponges are highly relevant for inferring the early history of animals, yet their proteomes remain sparsely annotated. MorF accurately predicts the functions of proteins with known homology in >90% cases and annotates an additional 50% of the proteome beyond standard sequence-based methods. We uncover new functions for sponge cell types, including extensive FGF, TGF, and Ephrin signaling in sponge epithelia, and redox metabolism and control in myopeptidocytes. Notably, we also annotate genes specific to the enigmatic sponge mesocytes, proposing they function to digest cell walls. Conclusions Our work demonstrates that structural similarity is a powerful approach that complements and extends sequence similarity searches to identify homologous proteins over long evolutionary distances. We anticipate this will be a powerful approach that boosts discovery in numerous -omics datasets, especially for non-model organisms

    The origins and persistence of Homo floresiensis on Flores: biogeographical and ecological perspectives

    Get PDF
    The finding of archaeological evidence predating 1 Ma and a small hominin species (Homo floresiensis) on Flores, Indonesia, has stimulated much research on its origins and ancestry. Here we take a different approach and examine two key questions – 1) how did the ancestors of H. floresiensis reach Flores and 2) what are the prospects and difficulties of estimating the likelihood of hominin persistence for over 1 million years on a small island? With regard to the first question, on the basis of the biogeography we conclude that the mammalian, avian, and reptilian fauna on Flores arrived from a number of sources including Java, Sulawesi and Sahul. Many of the terrestrial taxa were able to float or swim (e.g. stegodons, giant tortoises and the Komodo dragon), while the rodents and hominins probably accidentally rafted from Sulawesi, following the prevailing currents. The precise route by which hominins arrived on Flores cannot at present be determined, although a route from South Asia through Indochina, Sulawesi and hence Flores is tentatively supported on the basis of zoogeography. With regards to the second question, we find the archaeological record equivocal. A basic energetics model shows that a greater number of small-bodied hominins could persist on Flores than larger-bodied hominins (whether H. floresiensis is a dwarfed species or a descendent of an early small-bodied ancestor is immaterial here), which may in part explain their apparent long-term success. Yet the frequent tsunamis and volcanic eruptions in the region would certainly have affected all the taxa on the island, and at least one turnover event is recorded, when Stegodon sondaari became extinct. The question of the likelihood of persistence may be unanswerable until we know much more about the biology of H. floresiensis

    A Semantic Web Management Model for Integrative Biomedical Informatics

    Get PDF
    Data, data everywhere. The diversity and magnitude of the data generated in the Life Sciences defies automated articulation among complementary efforts. The additional need in this field for managing property and access permissions compounds the difficulty very significantly. This is particularly the case when the integration involves multiple domains and disciplines, even more so when it includes clinical and high throughput molecular data.The emergence of Semantic Web technologies brings the promise of meaningful interoperation between data and analysis resources. In this report we identify a core model for biomedical Knowledge Engineering applications and demonstrate how this new technology can be used to weave a management model where multiple intertwined data structures can be hosted and managed by multiple authorities in a distributed management infrastructure. Specifically, the demonstration is performed by linking data sources associated with the Lung Cancer SPORE awarded to The University of Texas MD Anderson Cancer Center at Houston and the Southwestern Medical Center at Dallas. A software prototype, available with open source at www.s3db.org, was developed and its proposed design has been made publicly available as an open source instrument for shared, distributed data management.The Semantic Web technologies have the potential to addresses the need for distributed and evolvable representations that are critical for systems Biology and translational biomedical research. As this technology is incorporated into application development we can expect that both general purpose productivity software and domain specific software installed on our personal computers will become increasingly integrated with the relevant remote resources. In this scenario, the acquisition of a new dataset should automatically trigger the delegation of its analysis

    Molecular Evolution of the Two-Component System BvgAS Involved in Virulence Regulation in Bordetella

    Get PDF
    The whooping cough agent Bordetella pertussis is closely related to Bordetella bronchiseptica, which is responsible for chronic respiratory infections in various mammals and is occasionally found in humans, and to Bordetella parapertussis, one lineage of which causes mild whooping cough in humans and the other ovine respiratory infections. All three species produce similar sets of virulence factors that are co-regulated by the two-component system BvgAS. We characterized the molecular diversity of BvgAS in Bordetella by sequencing the two genes from a large number of diverse isolates. The response regulator BvgA is virtually invariant, indicating strong functional constraints. In contrast, the multi-domain sensor kinase BvgS has evolved into two different types. The pertussis type is found in B. pertussis and in a lineage of essentially human-associated B. bronchiseptica, while the bronchiseptica type is associated with the majority of B. bronchiseptica and both ovine and human B. parapertussis. BvgS is monomorphic in B. pertussis, suggesting optimal adaptation or a recent population bottleneck. The degree of diversity of the bronchiseptica type BvgS is markedly different between domains, indicating distinct evolutionary pressures. Thus, absolute conservation of the putative solute-binding cavities of the two periplasmic Venus Fly Trap (VFT) domains suggests that common signals are perceived in all three species, while the external surfaces of these domains vary more extensively. Co-evolution of the surfaces of the two VFT domains in each type and domain swapping experiments indicate that signal transduction in the periplasmic region may be type-specific. The two distinct evolutionary solutions for BvgS confirm that B. pertussis has emerged from a specific B. bronchiseptica lineage. The invariant regions of BvgS point to essential parts for its molecular mechanism, while the variable regions may indicate adaptations to different lifestyles. The repertoire of BvgS sequences will pave the way for functional analyses of this prototypic system

    A Combination of Independent Transcriptional Regulators Shapes Bacterial Virulence Gene Expression during Infection

    Get PDF
    Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS) suggested that the transcriptional regulator catabolite control protein A (CcpA) influences many of the same genes as the control of virulence (CovRS) two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both ΔccpA and ΔcovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, ΔccpA and ΔcovRΔccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the ΔccpA and ΔcovRΔccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection

    In COVID-19 Health Messaging, Loss Framing Increases Anxiety with Little-to-No Concomitant Benefits: Experimental Evidence from 84 Countries

    Get PDF
    The COVID-19 pandemic (and its aftermath) highlights a critical need to communicate health information effectively to the global public. Given that subtle differences in information framing can have meaningful effects on behavior, behavioral science research highlights a pressing question: Is it more effective to frame COVID-19 health messages in terms of potential losses (e.g., "If you do not practice these steps, you can endanger yourself and others") or potential gains (e.g., "If you practice these steps, you can protect yourself and others")? Collecting data in 48 languages from 15,929 participants in 84 countries, we experimentally tested the effects of message framing on COVID-19-related judgments, intentions, and feelings. Loss- (vs. gain-) framed messages increased self-reported anxiety among participants cross-nationally with little-to-no impact on policy attitudes, behavioral intentions, or information seeking relevant to pandemic risks. These results were consistent across 84 countries, three variations of the message framing wording, and 560 data processing and analytic choices. Thus, results provide an empirical answer to a global communication question and highlight the emotional toll of loss-framed messages. Critically, this work demonstrates the importance of considering unintended affective consequences when evaluating nudge-style interventions

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    Crustacean leg regeneration restores complex microanatomy and cell diversity

    No full text
    International audienceAnimals can regenerate complex organs, yet this process frequently results in imprecise replicas of the original structure. In the crustacean Parhyale , embryonic and regenerating legs differ in gene expression dynamics but produce apparently similar mature structures. We examine the fidelity of Parhyale leg regeneration using complementary approaches to investigate microanatomy, sensory function, cellular composition, and cell molecular profiles. We find that regeneration precisely replicates the complex microanatomy and spatial distribution of external sensory organs and restores their sensory function. Single-nuclei sequencing shows that regenerated and uninjured legs are indistinguishable in terms of cell-type composition and transcriptional profiles. This remarkable fidelity highlights the ability of organisms to achieve identical outcomes via distinct processes
    corecore