397 research outputs found

    Predictors of lane-change errors in older drivers

    Get PDF
    OBJECTIVES: To determine the factors that predict errors in executing proper lane changes among older drivers. DESIGN: Cross-sectional analysis of data from a longitudinal study. SETTING: Maryland's Eastern Shore. PARTICIPANTS: One thousand eighty drivers aged 67 to 87 enrolled in the Salisbury Eye Evaluation Driving Study. MEASUREMENTS: Tests of vision, cognition, health status, and self-reported distress and a driving monitoring system in each participant's car, used to quantify lane-change errors. RESULTS: In regression models, measures of neither vision nor perceived stress were related to lane-change errors after controlling for age, sex, race, and residence location. In contrast, cognitive variables, specifically performance on the Brief Test of Attention and the Beery-Buktenicka Test of Visual-Motor Integration, were related to lane-change errors. CONCLUSION: The current findings underscore the importance of specific cognitive skills, particularly auditory attention and visual perception, in the execution of driving maneuvers in older individuals

    Changing trends in mortality among solid organ transplant recipients hospitalized for COVID-19 during the course of the pandemic

    Get PDF
    Mortality among patients hospitalized for COVID-19 has declined over the course of the pandemic. Mortality trends specifically in solid organ transplant recipients (SOTR) are unknown. Using data from a multicenter registry of SOTR hospitalized for COVID-19, we compared 28-day mortality between early 2020 (March 1, 2020–June 19, 2020) and late 2020 (June 20, 2020–December 31, 2020). Multivariable logistic regression was used to assess comorbidity-adjusted mortality. Time period of diagnosis was available for 1435/1616 (88.8%) SOTR and 971/1435 (67.7%) were hospitalized: 571/753 (75.8%) in early 2020 and 402/682 (58.9%) in late 2020 (p <.001). Crude 28-day mortality decreased between the early and late periods (112/571 [19.6%] vs. 55/402 [13.7%]) and remained lower in the late period even after adjusting for baseline comorbidities (aOR 0.67, 95% CI 0.46–0.98, p =.016). Between the early and late periods, the use of corticosteroids (≄6 mg dexamethasone/day) and remdesivir increased (62/571 [10.9%] vs. 243/402 [61.5%], p <.001 and 50/571 [8.8%] vs. 213/402 [52.2%], p <.001, respectively), and the use of hydroxychloroquine and IL-6/IL-6 receptor inhibitor decreased (329/571 [60.0%] vs. 4/492 [1.0%], p <.001 and 73/571 [12.8%] vs. 5/402 [1.2%], p <.001, respectively). Mortality among SOTR hospitalized for COVID-19 declined between early and late 2020, consistent with trends reported in the general population. The mechanism(s) underlying improved survival require further study

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton–proton collisions at √s=13TeV with the ATLAS detector

    Get PDF
    Searches for high-mass resonances in the dijet invariant mass spectrum with one or two jets identi-fied as b-jets are performed using an integrated luminosity of 3.2fb−1of proton–proton collisions with a centre-of-mass energy of √s=13TeVrecorded by the ATLAS detector at the Large Hadron Collider. Noevidence of anomalous phenomena is observed in the data, which are used to exclude, at 95%credibility level, excited b∗quarks with masses from 1.1TeVto 2.1TeVand leptophobic Z bosons with masses from 1.1TeVto 1.5TeV. Contributions of a Gaussian signal shape with effective cross sections ranging from approximately 0.4 to 0.001pb are also excluded in the mass range 1.5–5.0TeV
    • 

    corecore