1,563 research outputs found

    A compact photoreactor for automated H2 photoproduction: Revisiting the (Pd, Pt, Au)/TiO2 (P25) Schottky junctions

    Get PDF
    The configuration and geometry of chemical reactors underpins the accuracy of performance evaluation for photocatalytic materials and, accordingly, the development and validation of thermodynamic and kinetic model reactions. The lack of accurate photonic, mass, and heat transport profiles for photochemical reactors hinder standardization, scale-up, and ultimately comparison between different experiments. This work proposes two contributions at the interface between engineering of chemical process and materials science: (A) an automated compact stainless-steel photoreactor with 40 cm3 and 65 cm2 of volume and area, respectively, for hydrogen photoproduction as a model reaction and (B) the synthesis, characterization, and performance of TiO2 Schottky junctions, using Pd, Pt, or Au nanoparticles (ca. 0.5, 1, 2 wt% loadings each) to validate the operation of the reactor. A photonic profile methodology is implemented to the studied reactor to obtain the local light absorption profile, opening up for evaluation of the local quantum yield calculation for the selected materials. A combination of transmission electron microscopy, (X-ray/ultraviolet) photoelectron/electron, energy loss/infrared spectroscopies, X-ray scattering, inductively coupled plasma atomic emission spectroscopy, and ultraviolet–visible spectrophotometry is employed to determine the distinctive surface and bulk properties to build structure–function correlations. The (Pd, Pt, Au)/TiO2 Schottky junction exhibits H2 production rates slightly higher than previous studies, with quantum yields almost 2-fold higher than reported values. These results, demonstrate that the proposed novel geometry of the photoreactor improves the photonic, heat, and mass profiles. An in-depth analysis of the Au plasmon was investigated coupling electron energy loss spectroscopy, UV–vis, and transmission electron microscope, resulting in insightful information about the Au NP mode at the TiO2 interface

    Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth

    Get PDF
    The overexpression of the protein tyrosine kinase, Focal adhesion kinase (FAK), in endothelial cells has implicated its requirement in angiogenesis and tumour growth, but how pericyte FAK regulates tumour angiogenesis is unknown. We show that pericyte FAK regulates tumour growth and angiogenesis in multiple mouse models of melanoma, lung carcinoma and pancreatic B-cell insulinoma and provide evidence that loss of pericyte FAK enhances Gas6-stimulated phosphorylation of the receptor tyrosine kinase, Axl with an upregulation of Cyr61, driving enhanced tumour growth. We further show that pericyte derived Cyr61 instructs tumour cells to elevate expression of the proangiogenic/protumourigenic transmembrane receptor Tissue Factor. Finally, in human melanoma we show that when 50% or more tumour blood vessels are pericyte-FAK negative, melanoma patients are stratified into those with increased tumour size, enhanced blood vessel density and metastasis. Overall our data uncover a previously unknown mechanism of tumour growth by pericytes that is controlled by pericyte FAK

    Charge separation: From the topology of molecular electronic transitions to the dye/semiconductor interfacial energetics and kinetics

    Full text link
    Charge separation properties, that is the ability of a chromophore, or a chromophore/semiconductor interface, to separate charges upon light absorption, are crucial characteristics for an efficient photovoltaic device. Starting from this concept, we devote the first part of this book chapter to the topological analysis of molecular electronic transitions induced by photon capture. Such analysis can be either qualitative or quantitative, and is presented here in the framework of the reduced density matrix theory applied to single-reference, multiconfigurational excited states. The qualitative strategies are separated into density-based and wave function-based approaches, while the quantitative methods reported here for analysing the photoinduced charge transfer nature are either fragment-based, global or statistical. In the second part of this chapter we extend the analysis to dye-sensitized metal oxide surface models, discussing interfacial charge separation, energetics and electron injection kinetics from the dye excited state to the semiconductor conduction band states

    Immune Tolerance to Apoptotic Self is mediated primarily by Regulatory B1a cells

    Get PDF
    The chronic autoimmune inflammatory diseases, systemic lupus erythematosus and Sjogren’s syndrome, develop when tolerance to apoptotic cells (ACs) is lost. We have previously reported that this tolerance is maintained by innate-like, IL-10 secreting regulatory B cells. Two questions remained. First, do these regulatory B cells belong predominantly to a single subset of steady-state B cells and second, what is their specificity? We report here that innate-like B cells with markers characteristic for B1a cells (CD43+veCD19hiCD5+veIgMhiIgDlo) constitute 80% of splenic and 96% of peritoneal B cells that respond to ACs by secreting IL-10. AC responsive B1a cells secrete self-reactive natural antibodies (NAbs) and IL-10, which is augmented by toll-like receptor (TLR) 7 or TLR9 stimulation. In so doing, they both accelerate the clearance of dying cells by macrophages and inhibit their potential to mount proinflammatory immune responses. While B1a cells make prolonged contact with ACs, they do not require TIM1 or complement to mediate their regulatory function. In an animal model of neural inflammation (experimental autoimmune encephalomyelitis), just 105 activated B1a B cells was sufficient to restrain inflammation. Activated B1a B cells also induced antigen-specific T cells to secrete IL-10. Hence, regulatory B1a cells specifically recognize and augment tolerance to apoptotic self via IL-10 and NAbs; but once activated, can also prevent autoimmune mediated inflammation

    Selection of Nature-Based Solutions to Improve Comfort in Schools During Heat Waves

    Full text link
    Climate change impacts particularly affect vulnerable populations such as children. Therefore, addressing the adaptation of educational buildings is crucial in avoiding these negative effects on school performance. In this paper, three educational buildings, located in Badajoz (Spain), Evora (Portugal) and Porto (Portugal), serve as pilot samples to study the suitability of nature-based solutions (NBS), chosen for each one of three climatic zones. The NBS selected include green roofs, vertical structures with vegetation to shade holes, outdoor trees and free-cooling ventilation. The scenarios of the different NBS implemented in the three models were simulated with the software EnergyPlus, which allows optimising the appropriate decision before renovation operations begin. The results obtained from the simulations suggest energy performance improvements after applying the most adequate NBS selection to each one of the three buildings tested. Particularly, a reduction in radiation on both roofs and facades is required in the case of Evora and Badajoz, where both climate zones have similar features, that is, warm and dry. While in Porto, milder and more humid than the former ones, it is very effective to operate mainly on the roof, complemented by small ventilation operations.The authors gratefully acknowledge the support of this work by the LIFE+ Programme under the responsibility of the Directorate General for the Environment of the European Commission through the agreement LIFE17 CCA/ES/00088, LIFE myBU ILDINGisGREEN

    Inhibition of LDL-oxidation and antioxidant properties related to polyphenol content of hydrophilic fractions from seaweed Halimeda Incrassata (Ellis) Lamouroux

    Get PDF
    LDL oxidation and oxidative stress are closely related to atherosclerosis. Therefore, natural antioxidants have been studied as promising candidates. In the present study, the LDL oxidation inhibition activity of bioactive compounds from Halimeda incrassata seaweed. associated to antioxidant capacity, was evaluated in vitro. Experimental work was conducted with lyophilized aqueous extract and phenolic-rich fractions of the seaweed and their effect on LDL oxidation was evaluated using heparin-precipitated LDL (hep-LDL) with exposure to Cu2+ ions and AAPH as the free radical generator. H. incrassata had a protective effect for hep-LDL in both systems and the presence of phenolic compounds contributed to the activity where phenolic-rich fractions showed significant capacity for inhibition of oxidation mediated by Cu2+ ions. The observed effect could be related to the antioxidant potential of polar fractions evidenced by reducing activity and DPPH center dot radical scavenging. The results obtained in vitro further support the antioxidant and LDL oxidation inhibition properties of H. incrassata and further knowledge toward future phytotherapeutic application of the seaweed.IFSIFS [F/4897-1]CIHR [MOP24447]CIHRCanadian Research Chair awardCanadian Research Chair awardGSEPGSEPCNPq (Brasil)CNPq- (Brasil

    The mechanisms of detoxification of As(III), dimethylarsinic acid (DMA) and As(V) in the microalga Chlorella vulgaris

    Get PDF
    The response of Chlorella vulgaris when challenged by As(III), As(V) and dimethylarsinic acid (DMA) was assessed through experiments on adsorption, efflux and speciation of arsenic (reduction, oxidation, methylation and chelation with glutathione/phytochelatin [GSH/PC]). Our study indicates that at high concentrations of phosphate (1.62 mM of HPO42−), upon exposure to As(V), cells are able to shift towards methylation of As(V) rather than PC formation. Treatment with As(V) caused a moderate decrease in intracellular pH and a strong increase in the concentration of free thiols (GSH). Passive surface adsorption was found to be negligible for living cells exposed to DMA and As(V). However, adsorption of As(III) was observed to be an active process in C. vulgaris, because it did not show saturation at any of the exposure periods. Chelation of As(III) with GS/PC and to a lesser extent hGS/hPC is a major detoxification mechanism employed by C. vulgaris cells when exposed to As(III). The increase of bound As-GS/PC complexes was found to be strongly related to an increase in concentration of As(III) in media. C. vulgaris cells did not produce any As-GS/PC complex when exposed to As(V). This may indicate that a reduction step is needed for As(V) complexation with GSH/PC. C. vulgaris cells formed DMASV-GS upon exposure to DMA independent of the exposure period. As(III) triggers the formation of arsenic complexes with PC and homophytochelatins (hPC) and their compartmentalisation to vacuoles. A conceptual model was devised to explain the mechanisms involving ABCC1/2 transport. The potential of C. vulgaris to bio-remediate arsenic from water appeared to be highly selective and effective without the potential hazard of reducing As(V) to As(III), which is more toxic to humans

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    • 

    corecore