4,097 research outputs found

    Progress in Time-Dependent Density-Functional Theory

    Full text link
    The classic density-functional theory (DFT) formalism introduced by Hohenberg, Kohn, and Sham in the mid-1960s, is based upon the idea that the complicated N-electron wavefunction can be replaced with the mathematically simpler 1-electron charge density in electronic struc- ture calculations of the ground stationary state. As such, ordinary DFT is neither able to treat time-dependent (TD) problems nor describe excited electronic states. In 1984, Runge and Gross proved a theorem making TD-DFT formally exact. Information about electronic excited states may be obtained from this theory through the linear response (LR) theory formalism. Begin- ning in the mid-1990s, LR-TD-DFT became increasingly popular for calculating absorption and other spectra of medium- and large-sized molecules. Its ease of use and relatively good accuracy has now brought LR-TD-DFT to the forefront for this type of application. As the number and the diversity of applications of TD-DFT has grown, so too has grown our understanding of the strengths and weaknesses of the approximate functionals commonly used for TD-DFT. The objective of this article is to continue where a previous review of TD-DFT in this series [Annu. Rev. Phys. Chem. 55: 427 (2004)] left off and highlight some of the problems and solutions from the point of view of applied physical chemistry. Since doubly-excited states have a particularly important role to play in bond dissociation and formation in both thermal and photochemistry, particular emphasis will be placed upon the problem of going beyond or around the TD-DFT adiabatic approximation which limits TD-DFT calculations to nominally singly-excited states. Posted with permission from the Annual Review of Physical Chemistry, Volume 63 \c{opyright} 2012 by Annual Reviews, http://www.annualreviews.org

    Many-Body Perturbation Theory (MBPT) and Time-Dependent Density-Functional Theory (TD-DFT): MBPT Insights About What is Missing in, and Corrections to, the TD-DFT Adiabatic Approximation

    Full text link
    In their famous paper Kohn and Sham formulated a formally exact density-functional theory (DFT) for the ground-state energy and density of a system of NN interacting electrons, albeit limited at the time by certain troubling representability questions. As no practical exact form of the exchange-correlation (xc) energy functional was known, the xc-functional had to be approximated, ideally by a local or semilocal functional. Nowadays however the realization that Nature is not always so nearsighted has driven us up Perdew's Jacob's ladder to find increasingly nonlocal density/wavefunction hybrid functionals. Time-dependent (TD-) DFT is a younger development which allows DFT concepts to be used to describe the temporal evolution of the density in the presence of a perturbing field. Linear response (LR) theory then allows spectra and other information about excited states to be extracted from TD-DFT. Once again the exact TD-DFT xc-functional must be approximated in practical calculations and this has historically been done using the TD-DFT adiabatic approximation (AA) which is to TD-DFT very much like what the local density approximation (LDA) is to conventional ground-state DFT. While some of the recent advances in TD-DFT focus on what can be done within the AA, others explore ways around the AA. After giving an overview of DFT, TD-DFT, and LR-TD-DFT, this article will focus on many-body corrections to LR-TD-DFT as one way to building hybrid density-functional/wavefunction methodology for incorporating aspects of nonlocality in time not present in the AA.Comment: 56 pages, 17 figure

    Alloying effects on the optical properties of Ge1x_{1-x}Six_x nanocrystals from TDDFT and comparison with effective-medium theory

    Full text link
    We present the optical spectra of Ge1x_{1-x}Six_x alloy nanocrystals calculated with time-dependent density-functional theory in the adiabatic local-density ap proximation (TDLDA). The spectra change smoothly as a function of the compositio n xx. On the Ge side of the composition range, the lowest excitations at the ab sorption edge are almost pure Kohn-Sham independent-particle HOMO-LUMO transitio ns, while for higher Si contents strong mixing of transitions is found. Within T DLDA the first peak is slightly higher in energy than in earlier independent-par ticle calculations. However, the absorption onset and in particular its composit ion dependence is similar to independent-particle results. Moreover, classical depolarization effects are responsible for a very strong suppression of the abs orption intensity. We show that they can be taken into account in a simpler way using Maxwell-Garnett classical effective-medium theory. Emission spectra are in vestigated by calculating the absorption of excited nanocrystals at their relaxe d geometry. The structural contribution to the Stokes shift is about 0.5 eV. Th e decomposition of the emission spectra in terms of independent-particle transit ions is similar to what is found for absorption. For the emission, very weak tra nsitions are found in Ge-rich clusters well below the strong absorption onset.Comment: submitted to Phys. Rev.

    Wavelet-Based Linear-Response Time-Dependent Density-Functional Theory

    Full text link
    Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BigDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program deMon2k for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BigDFT than for deMon2k. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BigDFT, while all virtual orbitals are included in TD-DFT calculations in deMon2k. As a reality check, we report the x-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-amine

    Time-dependent Kohn-Sham theory with memory

    Full text link
    In time-dependent density-functional theory, exchange and correlation (xc) beyond the adiabatic local density approximation can be described in terms of viscoelastic stresses in the electron liquid. In the time domain, this leads to a velocity-dependent xc vector potential with a memory containing short- and long-range components. The resulting time-dependent Kohn-Sham formalism describes the dynamics of electronic systems including decoherence and relaxation. For the example of collective charge-density oscillations in a quantum well, we illustrate the xc memory effects, clarify the dissipation mechanism, and extract intersubband relaxation rates for weak and strong excitations.Comment: 4 pages, 4 figure

    Advancing the Science of Self‐Management in Adults With Long‐Term Left Ventricular Assist Devices

    Full text link
    This study tested the applicability of the individual and family self‐management theory (IFSMT) to self‐management (SM) in patients with left ventricular assist devices (LVADs). From an existing data set, we extracted the following variables that correspond to IFSMT’s conceptual dimensions: anxiety, depression, and cognition (context dimension); self‐efficacy (SM process dimension); adherence and quality of life (QOL; outcome dimensions). Descriptive statistics and partial least squares path modeling procedures were used for data analyses. A total of 100 patients (mean age 52 ± 13.4 years) with continuous flow LVAD designs comprised the present study. Most patients were White (78%), married (69%), college‐educated (72%), and on disability (53%). Their mean anxiety and depression scores were slightly above normal, while their cognitive function scores were slightly lower than normal. LVAD care self‐efficacy, adherence, and QOL were within normal ranges. Factor loadings ranged from 0.50 to 1.0, and there were significant forward path relationships among the context, process, and outcome dimensions (β ranges from 0.02 to 0.60, all P values < 0.05). In conclusion, the IFSMT provides a good fit for SM in LVAD. Further research is needed to clarify how best to improve LVAD SM practice and treatment outcomes.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146581/1/aor13113_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146581/2/aor13113.pd

    The correlation energy functional within the GW-RPA approximation: exact forms, approximate forms and challenges

    Full text link
    In principle, the Luttinger-Ward Green's function formalism allows one to compute simultaneously the total energy and the quasiparticle band structure of a many-body electronic system from first principles. We present approximate and exact expressions for the correlation energy within the GW-RPA approximation that are more amenable to computation and allow for developing efficient approximations to the self-energy operator and correlation energy. The exact form is a sum over differences between plasmon and interband energies. The approximate forms are based on summing over screened interband transitions. We also demonstrate that blind extremization of such functionals leads to unphysical results: imposing physical constraints on the allowed solutions (Green's functions) is necessary. Finally, we present some relevant numerical results for atomic systems.Comment: 3 figures and 3 tables, under review at Physical Review

    Partial Density of States Ligand Field Theory (PDOS-LFT): Recovering a LFT-Like Picture and Application to Photoproperties of Ruthenium(II) Polypyridine Complexes

    Full text link
    Gas phase density-functional theory (DFT) and time-dependent DFT (TD-DFT) calculations are reported for a data base of 98 ruthenium(II) polypyridine complexes. Comparison with X-ray crystal geometries and with experimental absorption spectra measured in solution show an excellent linear correlation with the results of the gas phase calculations. Comparing this with the usual chemical understanding based upon ligand field theory (LFT) is complicated by the large number of molecular orbitals present and especially by the heavy mixing of the antibonding metal e*g_{g} orbitals with ligand orbitals. Nevertheless, we show that a deeper understanding can be obtained by a partial density-of-states (PDOS) analysis which allows us to extract approximate metal t2g_{2g} and e*g_{g} and ligand \pi* orbital energies in a well-defined way, thus providing a PDOS analogue of LFT (PDOS-LFT). Not only do PDOS-LFT energies generate a spectrochemical series for the ligands, but orbital energy differences provide good estimates of TD-DFT absorption energies. Encouraged by this success, we use frontier-molecular-orbital-theory-like reasoning to construct a model which allows us in most, but not all, of the cases studied to use PDOS-LFT energies to provide a semiquantitative relationship between luminescence lifetimes at room temperature and liquid nitrogen temperature

    Undoing static correlation: Long-range charge transfer in time-dependent density functional theory

    Full text link
    Long-range charge transfer excited states are notoriously badly underestimated in time-dependent density functional theory (TDDFT). We resolve how {\it exact} TDDFT captures charge transfer between open-shell species: in particular the role of the step in the ground-state potential, and the severe frequency-dependence of the exchange-correlation kernel. An expression for the latter is derived, that becomes exact in the limit that the charge-transfer excitations are well-separated from other excitations. The exchange-correlation kernel has the task of undoing the static correlation in the ground state introduced by the step, in order to accurately recover the physical charge-transfer states.Comment: 2 figure
    corecore