14 research outputs found

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    The Synergic Effects of FDM 3D Printing Parameters on Mechanical Behaviors of Bronze Poly Lactic Acid Composites

    No full text
    In this paper, the influence of layer thickness (LT), infill percentage (IP), and extruder temperature (ET) on the maximum failure load, thickness, and build time of bronze polylactic acid (Br-PLA) composites 3D printed by the fused deposition modeling (FDM) was investigated via an optimization method. PLA is a thermoplastic aliphatic polyester obtained from renewable sources, such as fermented plant starch, especially made by corn starch. The design of experiment (DOE) approach was used for optimization parameters, and 3D printings were optimized according to the applied statistical analyses to reach the best features. The maximum value of failure load and minimum value of the build time were considered as optimization criteria. Analysis of variance results identified the layer thickness as the main controlled variable for all responses. Optimum solutions were examined by experimental preparation to assess the efficiency of the optimization method. There was a superb compromise among experimental outcomes and predictions of the response surface method, confirming the reliability of predictive models. The optimum setting for fulfilling the first criterion could result in a sample with more than 1021 N maximum failure load. Finally, a comparison of maximum failure from PLA with Br-PLA was studied

    Laser surface hardening of AISI 420 steel: Parametric evaluation, statistical modeling and optimization

    No full text
    In this study, the AISI 420 was laser surface transformation hardened (LSTH) utilizing a high power diode laser (HPDL). The experimental tests were performed based on design of experiment method. Laser power, laser scanning speed, and focal plane position (FPP) of laser beam were considered as input parameters and their influences on geometry of the hardened area (depth and width), the maximum micro-hardness and the hardness deviation from the base metal were investigated. The laser hardened samples were structurally analyzed by metallurgical investigation and mechanically evaluated by micro-hardness testing; Microstructural studies on laser-treated surfaces were conducted by scanning electron microscopy (FE-SEM) and optical microscope. The micro-hardness of the width and depth of the hardened layer was measured. Macro-image testing has been done to measure the hardened area geometric dimensions accurately. After the aforementioned tests, the interpretation of how the various parameters of the laser are affected by the quantum exit of the components is discussed. Result revealed that when the laser power raises and laser speed fall off, dimension of hardness area were increased. When FPP decreased, hardened depth was decreased and width was raised. Statistical analysis of the results was performed using the Design Expert software to explore the penetration of mechanism parameters on the behavior of responses, to obtain regression equations and to predict the results. Optimization of the LSTH process to achieve an optimal hardness and also optimal settings of parameters were the other goals of this exploration

    Experimental and Numerical Study of AISI 4130 Steel Surface Hardening by Pulsed Nd:YAG Laser

    No full text
    Laser surface transformation hardening (LSTH) of AISI 4130 was investigated by a Nd:YAG pulsed laser. Laser focal height (LFH), pulse width (LPW), scanning speed (LSS), and power (LP) varied during the experiments. The microstructure of the treated zone was characterized by optical (OM) and field emission scanning electron microscopy (FESEM). Micro-hardness was measured in the width and depth directions. Results showed that the hardness and depth of hardened layer increased by decreasing the LSS and the laser focal position (LFP), and by increasing the LPW. The results were compared with those obtained by furnace heat treatment of the same steel. Eventually, a finite element model was employed for the simulation of the LSTH of AISI 4130 steel and calculation of the heat-treated zone. The results showed that the model can predict with accuracy the temperature profile and the size and the shape of the laser hardened region

    Nd:YAG laser hardening of AISI 410 stainless steel: microstructural evaluation, mechanical properties, and corrosion behavior

    Get PDF
    In this paper, a pulsed Nd:YAG laser with a maximum power of 700 W, was utilized to investigate the laser surface hardening of AISI 410 martensitic stainless steel. Focal point position, scanning speed and pulse width were considered as process variable parameters. Corrosion behavior of laser surface hardened samples were investigated by IVIUMSTAT apparatus in a 3.5wt% NaCl solution. Maximum microhardness, depth, and width of hardness and percentage of ferrite phase of metallographic and FESEM pictures were evaluated. Results show that surface hardness increased up to 762 HV. Results also reveal that the laser focal point position and pulse width are effective parameters in laser hardening process. In potentiodynamic polarization tests potential stated to increase at a rate of 1 mV/s from -0.4 V to 0.2 V. Results indicate that the corrosion resistance increased due to laser hardening process

    Direct Laser Metal Deposition (DLMD) Additive Manufacturing (AM) of Inconel 718 Superalloy: Elemental, Microstructural and Physical Properties Evaluation

    No full text
    In this study, Direct Laser Metal Deposition (DLMD) technique is adopted for the additive manufacturing (AM) of Inconel 718 Superalloy. A 1 kW fiber laser with a coaxial nozzle head is used. The effects of scanning speed (2.5 and 5 mm/s) as well as powder feed rate (17.94 and 28.52 g/min) on the process were investigated. Characteristics of the 3D printed wall specimens such as the geometrical dimensions (width and height), microstructure observations, and the microhardness were obtained. To study the stability of the 3D manufactured walls, the height stability was considered for the investigation. Optical microscopy (OM), field emission electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and mapping analysis were performed to derive the microstructural features of the additively manufactured parts (AMP). Vickers microhardness test is used to evaluate the hardness distributions of AMP. Catchment concept of the powder in DLMD process is used for explaining different trends of the process. Results indicated that, by decreasing the scanning speed, the width and height of the deposited layer increase. The average width of AMP directly depends on scanning speed and the powder feed rate. Scanning speed has a reverse effect on the height stability; that is, the lower the scanning speed, the larger the stability. Microstructural results showed that because of the solidification process, the alloying elements will be accumulated in the grain boundaries. The non-uniform cooling rate and non-steady solidification rates of molten area in additive manufacturing process, the microhardness values of the AMP following a fluctuated trend
    corecore