31 research outputs found

    A generalist–specialist trade-off between switchgrass cytotypes impacts climate adaptation and geographic range

    Get PDF
    Polyploidy results from whole-genome duplication and is a unique form of heritable variation with pronounced evolutionary implications. Different ploidy levels, or cytotypes, can exist within a single species, and such systems provide an opportunity to assess how ploidy variation alters phenotypic novelty, adaptability, and fitness, which can, in turn, drive the development of unique ecological niches that promote the coexistence of multiple cytotypes. Switchgrass, Panicum virgatum, is a widespread, perennial C4 grass in North America with multiple naturally occurring cytotypes, primarily tetraploids (4×) and octoploids (8×). Using a combination of genomic, quantitative genetic, landscape, and niche modeling approaches, we detect divergent levels of genetic admixture, evidence of niche differentiation, and differential environmental sensitivity between switchgrass cytotypes. Taken together, these findings support a generalist (8×)–specialist (4×) trade-off. Our results indicate that the 8× represent a unique combination of genetic variation that has allowed the expansion of switchgrass’ ecological niche and thus putatively represents a valuable breeding resource

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe

    Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model

    Get PDF
    Studies of global hydrologic cycles, carbon cycles and climate change are greatly facilitated when global estimates of evapotranspiration (E) are available. We have developed an air-relative-humidity-based two-source (ARTS) E model that simulates the surface energy balance, soil water balance, and environmental constraints on E. It uses remotely sensed leaf area index (Lai) and surface meteorological data to estimate E by: 1) introducing a simple biophysical model for canopy conductance (Gc), defined as a constant maximum stomatal conductance gsmax of 12.2mm s−1multiplied by air relative humidity (Rh) and Lai (Gc = gs max×Rh × Lai); 2) calculating canopy transpiration with the Gc-based Penman–Monteith (PM) E model; 3) calculating soil evaporation from an air relative- humidity-based model of evapotranspiration (Yan & Shugart, 2010); 4) calculating total E (E0) as the sum of the canopy transpiration and soil evaporation, assuming the absence of soil water stress; and 5) correcting E0 for soil water stress using a soil water balance model. This physiological ARTS E model requires no calibration. Evaluation against eddy covariance measurements at 19 flux sites, representing a wide variety of climate and vegetation types, indicates that daily estimated E had a root mean square error = 0.77 mm d−1, bias=−0.14 mm d−1, and coefficient of determination, R2=0.69. Global, monthly, 0.5°-gridded ARTS E simulations from1984 to 1998,whichwere forced using Advanced Very High Resolution Radiometer Lai data, Climate Research Unit climate data, and surface radiation budget data, predicted a mean annual land E of 58.4×103 km3. This falls within the range (58×103–85×103 km3) estimated by the Second Global Soil Wetness Project (GSWP-2; Dirmeyer et al., 2006). The ARTS E spatial pattern agrees well with that of the global E estimated by GSWP-2. The global annual ARTS E increased by 15.5mm per decade from 1984 to 1998, comparable to an increase of 9.9 mm per decade from the model tree ensemble approach (Jung et al., 2010). These comparisons confirm the effectivity of the ARTS E model to simulate the spatial pattern and climate response of global E. This model is the first of its kind among remote-sensing-based PM E models to provide global land E estimation with consideration of the soil water balance

    Yellowstone after wolves

    Get PDF
    With gray wolves restored to Yellowstone National Park, this ecosystem once again supports the full native array of large ungulates and their attendant large carnivores. We consider the possible ecological implications of wolf restoration in the context of another national park, Isle Royale, where wolves restored themselves a half-century ago. At Isle Royale, where resident mammals are relatively few, wolves completely eliminated coyotes and went on to influence moose population dynamics, which had implications f or forest growth and composition. At Yellowstone, we predict that wolf restoration will have similar effects to a degree, reducing elk and coyote density. As at Isle Royale, Yellowstone plant communities will be affected, as will mesocarnivores, but to what degree is as yet undetermined. At Yellowstone, ecosystem response to the arrival of the wolf will take decades to unfold, and we argue that comprehensive ecological research and monitoring should be an essential long-term component of the management of Yellowstone National Park

    Recommendations for the management of renal involvement in the tuberous sclerosis complex

    No full text
    El complejo esclerosis tuberosa (CET) es una enfermedad rara, hereditaria, multisistémica y con un amplio espectro fenotípico. Su manejo requiere de la colaboración de múltiples especialistas. Así como en la edad pediátrica cobra un especial relieve el neurólogo pediatra, en la edad adulta la afectación renal es la causante de la mayor morbimortalidad. Existen diversas recomendaciones sobre el manejo general del paciente con CET, pero ninguna que se centre en la afectación renal. Las presentes recomendaciones responden a la necesidad de proporcionar pautas para facilitar un mejor conocimiento y manejo diagnóstico-terapéutico de la afectación renal del CET mediante un uso racional de las pruebas complementarias y el empleo correcto de los tratamientos disponibles. Su elaboración se ha basado en el consenso dentro del grupo de trabajo de enfermedades renales hereditarias de la SEN/REDINREN. Ha contado con la participación de especialistas en CET no nefrólogos también con el fin de ampliar la visión de la enfermedad
    corecore