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Abstract The quantification of carbon fluxes between the terrestrial biosphere and the
atmosphere s of scientific importance and alse relevant to climate-pohicy making. Eddy
covariance flux towers provide contitmous measurements of ecosystemrlevel exchange of
cathon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However,
these measurements only represent the fluxes ac the scale of the tower footprint. Here we used
remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) 10
upscale gross primary productivity (GPP) data from eddy covariance flux towers to the
continental scale. We first combined GPP and MODIS data for 42 AmeriFlox towers
encompaszing a wide range of ecosystem and climate types to develop a predictive GPP model
using 2 regression tree approach. The predictive model was trained using observed GPP over
the period 2000-2004, and was validated using observed GPP over the period 2003-2006 and
zave-one-out cross-validation. Our model predicted GPP fairly well at the site level, We then
used the mods! to estimate GPP for each 1 km x 1 ki cell across the U.S. for each 8-day
interval over the period from February 2000 to December 2006 pzing MODIS data, Qur GPP
extitnates provide a spatially and temporally continuous measure of gross primary production
for the U.S. that is a highly constrained by eddy covartance flux data. Our study demonstrated
that owr empirical approach is effective for upscaling eddy flux GPP data to the continental
scale and producing continnous GPP estimates across multiple biomes. With these estimates,
we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a
gross carbor uptake between 6.91 and 7.33 Pg C yr' for the conterminous U.S. Drought, fires,
and hurricanes reduced annual GPP at regional scales and could have a significant impact on
the 115, net ecosystem carbon exchange. The sources of the interannual variability of U.S.

PP wete dominated by these extreme ¢limate events and disturbances.
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1. Introduction

The quantification of acosystem carbon Auxes for regions, continents, or the globe can
improve our understanding of the feedbacks between the terrestrisl biosphere and the
atmgsphere in the comext of global change and facilitate climate policy decisions {Law et al.
200i). Gross primary produclivity (GPP) is the amount of carbon fixed by vegetation through
photesynthesis and a key component of ecosystem carbon fluxes and the carbon balance
between the biosphere and the atmosphers (Makeld et al 2008). The accurate estimation of
GPP is essential for the guantification of net ecosystem carbon exchange (NEE) as the latter 18
often a small difference of two large carbon fluxes — GPP and ecosystem respiration (Ra). The
estimation of GPP for regions, continents, or the globe, however, can only be made by using
ecogystem models {2.g., Prince and Goward 1995) andfor rch‘tutely sensed data {e.g., Running
et al. 2004}

Eddy covariance flux towers have been providing continuous measurements of
ecosystemr-lavel exchange of carbon, water, and energy spanning divrnal, synoptic, seasonal,
and interannual time scales since the early 1990s (Wofsy et al. 1993, Baldoechs et al. 2001). At
present, over 300 eddy covariance flux towers are operating on a long-term and continnous
basis arcund the werld (FLUXNET, http:f/dasac.orml.gov/FLUXNET). Thiz global network
encompasses a large range of climate and biome types (Baldocehi et al, 2001), and provides
probably the best estimates of ecosystemt-level carbon fluxes. The flux towers directly measure
NEE that can be separated into two major components: GPP and R. (Reichstein et al. 2005;
Desai et al. 20083, However, 1hese eslimates only represent fluxes at the scale of the tower
footprint with longitudinal dimensions ranging between a hundred meters and several

kilometers depernding on homogeneous vegetaiion and fetch {Schmnid, 1994; Gickede et al.,
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2008). To quantify the exchange of CO; between the terrestrial biosphere and the atmosphere,
significant efforts are needed to scale up flux tower measurements from the stand scale o0
landgcape, regional, continental, or global scales.

Sacsilite remote sepsing is a patentiaity valuable ool for scaling-up efforts (Running et
al. 199%; Turner et al. 2003; Xiao et al 2008). Several studies have integrated flux data with
remnote sensing data to quantify GPP over large arcas. Zhang et al, (2007) estimated GPP for
the Northern Great Plains grasslands using satellite and flux tower datz. Yang et al. (2007)
linked saellite observations to flux tower QPP data for the estimation of GPP for two broad
vegetation types in the U8, using a machine learning approach. Despite these efforts, to our
knowledge, no study has upscaled AmeriFlux GPP data to the continental scale to produce
spatially-explicit estimates of GPP across mwultiple biomes and to examine the patterns,
magnitude, and interannval variability of GPP over the conterminous U.S,

Here we used a regression tree approech and remotely-sensed data from the Moderate
Resolution Imaging Spectroradiometer (MODIS) to upscale flux tower GPP to the continental
scale and produced wall-to-wall GPP estimates for multiple biomes across the conterminous
U.S. First, we developed a predictive (GPP model] based on site-specific MODIS and flux tower
GPP data, and validated the model using eddy flox data in both temporal and spatial domains.
Second, we applied the model to estimate GPP for each 1 km x 1 km cell across the
contetrinous U.S. for each 8-day interval over the period 2000-2006 using wall-to-wall
MODIS data, Third, we examined the patterns, magnitude, and interannual variability of GPP

across the conterminous U.S.

2. Data and Methods

2. 1. Regression tree approach
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We vsed a modified regression tree approach impleimented in the commercial software,
Cubist, to npscale flux tower GPP to the continental scale. Regression tree algorithms typically
predict class membership by recursively partitioning a dataset into more homogeneous subsets.
The partitioning process splits each parent node into two child nodes, and each child node is
wreated as a potential parent node. Regression tree models can account for a snonlinear
refationship between predictive and target variables and allow both continuons and discrete
variables. Previous stngdies showed that regression tree methods ere pot only more effective
than simple techniques including multivariate linear regression, but also easier to understand
than nenral networks (e.g., Huang and Townshend 2003).

Cubist constrocts en unconventional type of regression tree, in which the terminal
nodes or leaves are linear regression models instead of discrete values (Minasny and
McBratney 2008). Cubist produces rule-based models containing one or more rules, cach of
which is a set of conditiens associated with a mwltivariate linear submodel. Cubist is a
powetful tool for gencrating mie-based predictive models. A Cubist model resembles a
piecewise linsar mwdel, except that the rules can overlap with one another (RuleQuest 2008).
Details on vegression tree approaches and Cubist were described in Yang et al. (2003), Wylie
et al. (2007), and Xiao et al. {2008). In our previous study, we used Cubist 1o develop a
predictive NEE model and vpscaled NEE estimates 1o the continental scale for the
conterminous UL.S. (Xiao et al. 2008). In this study, we nsed Cubist to construct a predictive
GPF model based on MODIS and AmeriFlux GPP data. Cubist uses three siatistical measures
to evaluate the guality of the constructed predictive model, including mean absolute etrror
{(MAE), relative error (RE), and product-moment correlation coefficient (Yang et al. 2003,

Xiao et al. 2008). MAF is calculated as:



161

162

163

164

165
166

167

168
169
170
171
172
173
174
175
176
177
178
179
180
181

182

il
MAE:-;FZHI- = {n

u]
where N is the number of sainples nsed to establish the predictive model, and y, and ¥, are

the actnal and predicted values of the response variable, respectively. RE is calculated as:

_ MAE, @)

RE =
MAE,

where MAEy is the MAE of the constructed model, and A{AF, is the MAE that would resolt
from always predicting the mean value. All three statistical measores were used to evaluate the

performance of the constructed model.

2.2, Explaratory varighles

GPP i3 influenced by a variety of physical, physiological, abmospheric, hydrological,
and edaphic variables. At the leaf level, GPP is infiuenced by several factors, including
incoming solar radiation, air (emperature, vapor pressure deficit, soil moisture, and nitrogen
availability (Ruimy et al. 1993; Clack et al. 1999, 2004). At the canopy or ecosystem level,
GPF ig also influenced by leaf area index {LAI) (Ruimy et al. 1995) and canopy phenology
(Richardson e1 al. 20082). At the stand or regional level, GPP is significantly affected by
disturbances such as fire and harvest (Law et al 2004). Many of these factors can be
etfectively assessed by satellite remote sensing. Surface reflectance depends on vegetation
type, bicphysical properties (e.g., biomass, leal arca, and stand age), soil background, soil
mavsture conditions, and sun-object-sensor geometry (Ranson et al. 1985, Penuelas et al. 1993,
Schmidr and Skidmore 2003). Vegetation indices incliding normalized difference vegetating
mndex {NDVI) and enhanced vegetation index (EVI) are closely correlated to the fraction of
photosynthetically active radiation (fPAR; Asrar et al. 1984), and are also related to vegetation

biomass and fractional vegetation cover (e.g., Tucker et al. 1985; Persson &t al. 1993; Myneni
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et al. 2001; Chen et al. 2004). Compared to NDVIL, EVT is more responsive (o canopy stroctural
variatiens, such as LAI, canopy type, plant physiognomy, and canopy architecture (Gao et al.
20009, The normalized difference water jndex (NDWT; Gao 1996) was shown to be strongly
correlated with leaf water content (Jackson et al. 2004) and so0il moisture (Fensholt & Sandholt
2003) over time. LAL and fPAR characierize vegetation canopy fonctioning and energy
sbsorption capacity (Myneni et al. 2002} and are key parameters in most ecosystem
productivity and bicgeochemical models (Sellers et al. 1997). We therefore selected surface
reflectance, EVI, LST, LAl fPAR, and NDWI as explanatory variables. All of these variables
were derived from MODIS data, which also avouded the complications and difficulties to

merge disparate data sovwrces (Xiao et al. 2008).

2.3. AmeriFlux data

We obtained the following three types of data: GPP from eddy covariance flux towers,
explanatory variables derived from MODIS, and a land cover map. The AmeriFlux network
coordingtes regional analysis of observations from eddy covariance flux towers across Nogth
America, Central America, and South America (Law 2006). We oblained the Level 4 data
product for 42 AmeriFlux sites over the period 2000-2006 from the AmeriFlux website
(http #public.ornl govfameriflux) (Table 1). This product inclodes NEE data from most of the
active flux sites in the network. These sites are distributed across the conterminous U5, and
cover 4 range of vepetation types: forests, shrublands, savannas, grasslands, and croplands.
Moreaver, the distribution of these sites in the mean anmual climate space indicates that the
sites we selected are farly representative of Lypical ULS, climate types (Xiao et al. 2008), In
addition, some of the forested sites (e.g., Austin Cary, FL; Metolins new young pine, OR;

Metolivs intermediate aged ponderosa pine, OR; Wisconsin intermediate hardwood, W1) are at
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different stages since stand replacing disturbance, which are located in disturbance clusters of
gites. In addition, some of the sites have received treatment, including the Howland Forast
West Towsr (ME, nitrogen fertilizer) and the Mead cropland sites (NE; imigation versus
rainfed, continuous maize versus maize/sovhean rotation). We therefore believe that these sites
are fairly representative of typical U.S, ecosystem and climate types.

The Level 4 prodoct consists of two types of GPP data, including standardized
{GPP_zty and original (GPP_or) GPP. GPP was calculated fromm NEE and ecosystem
respiration (R.):

GPP_st = R. - NEE_3t {3

GPP_or=R, - NEE_or {4)
where NEE_st and NEE_or are standardized and original NEE, respectively, NEE_st was
calculated using the storage obtained from the discrete approach (single point on the 1op of the
tower} with the same approach for all the sites, whereas NEE_or was calculated using the
storage sent by the principal investigators that can be obtained with the discrete approach or
uging a vertical CO, profile system. Both NEE_st and NEE_or were gap-filled using the
Margina! Distribution Sampling (MDS) method (Reichstein et al. 2005) and the Artificial
Neura] Network {ANN) method (Papale and Valentini 2003). The ANN methed was penerally,
if only slightly, superior to the MDS method (Moffat et al. 2007). A number of methods are
available for estimating GPP. Although Stoy et al, {2006} showed that the non-rectangular
hyperbolic methed (Gilmanov et al. 2003) produce estimates more consistent with independent
data, we chose 0 use a method that relies on gap-filled nighitime data because it 15 more

frequently used and less computationally demanding. We nsed GPP calevlated from NEE data

10
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that was gap-filled vsing the ANN method. For each site, if the percentage of the remaining
misgsing values for GPP_st was lower than that for GPP_or, we selected GPP_or: otherwise, we
wsed GPE_st. GPP_st was the first choice 3o that the procassing procedure for GPP was the
same for as many sites as possible. We used 8-day avesage GPP data (g C m” day) to match

the compositing intervals of MODIS data.

2.4. MOIMS data

We nzed the following four MODIS data products (Collection 4), including surface
reflectance (MODOOAY; Vermote and Vermegulen 1999), daytime and nighttime LST
(MOD11A2; Wan et al. 2002), EVI (MODI3Al1; Huete et al. 2002), and LAUfPAR
(MODI15A2; Myneni et al., 2002). Surface reflectance and EVI are at a spatial resolution of
500m, while LST, LAI, and (PAR are at spatial resolotion of 1 km. Surface reflectance, LST,
LAL and fPAR are at a temporal resolution of 8 days, while EVI is at a tempozal resolution of
16 days. Sims et al. (2005} showed that the midday values of gross Ok exchange during
satellite overpasses can be uged to estimate &-day mean gross CO: exchange, bridging the
connection between continvous measurements of flux tower data and 8-day MODIS data. We
nsed the 16-day EVI product instead of EVI calculated from 8-day surface reflectance despite
the lower temporal resolution of the 16-day EVE product. Each 16-day EVI composile was
composited from 16 daily observations (Huete et al. 2002). The VT algorithm applies a filter to
the data based on quality, clond, and viewing geometry, and only the higher quality, cloud-
free, filtered data are retained for compesiting; the maximum value composite (MVC) method
smployed selects the ohservation with the highest VI value to represent the compaosting period
{16 days) {(Huete et al. 20023, MYC minimuzes the contamination of clouds 2nd asresels and

the effects of sensor view angles on VI (Hoblen 1836). For the 8.day surface reflectance

11
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product, each pixel contains the best possible daily observation during an 8-day peried as
selected on the basis of high observation coverage, low view angle, the absence of clovds or
tloud show, and serosol Joading (Vermote and Kotchenova, 2008), and the EVI caleulated
from the 8-day surface reflectance is less representative of the composting period than the
MODIS EVI product.

For each AmeriFlux site, we obtained MODIS ASCII {American Standard Code for
Information Interchange) subsets (Collection 4) consisting of 7 km X 7 km regions centered on
the flux tower, including surface reflectance, daytime and nighttime LST, EVI, LAl and fPAR
over the period 2000-2006 from the Oask Ridge National Laboratory’s Distributed Active
Archive Center (ORNL DAAC 2006). We extracted average values for the central 3 km % 3
km area within the 7 km % 7 km cutouts to better represent the flux tower foorprint (Schmid
2002; Rahman et al. 2005; Xiao et al. 2008). For each variable, we determined the quality of
the value of each pixel within the area using the quality assurance {QA) flags included in the
product. At each time step, we averaged the values of each variable using the pixels with good
quality within the area to represert the values at the flux site. If none of the values within the 3
x 3 kn area were of good quality, we treated the period as missing. Each 16-day EVI value
waz used for the two B-day interval: corresponding with the compositing interval of other
MODIS data prodocts, NDWI was calcolated from band 2 and band 6 of the surface
reflectance product.

To estimate GPP at the continental scale, we obtained wali-to-wall MODIS data
including surface reflectance, daytime and nighttime LST, LAL, and EVI over the period from
February 2000 to December 2006 from the Earth Observing System (EOS) Data Gateway. For

each wvariable, we determined the qualbity of the valve of each pixel using the QA flags and

12
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replaced the bad-guality value using a lingar interpolation approach (Zhao et al. 2005). The
NDWT was calculated from band 2 (near-infrared, 841-876 nm) and band 6 (shormwave
infrared, 1628-1652 nm) of the surface reflectance product (MODO9AL). Similarly, each 16-
day EVE composite was used for two B-day inéervals corresponding to the compositing interval
of other MODIS products. NDWI was caiculated from band 2 and band 6 of the surface
teflectance product for cach 8-day interval.

We also vsed the MODIS 8-day GPP product (MODI74A2; Running et al. 2004) 10
evaluate the performance of ocur mode] at bath the site fevel. The MODIS GPP product is at a
spatial resolution of 1 km, and a temporal resolution of 8 days. We obtained MODIS ASCII
subsetz (Collaction 4} for the MODIS 8-day GPP product over the period 2005-2006 from the
Oak Ridge National Laboratory’s Distributed Active Archive Center (ORNL DAAC 2006).
We alsc obtained the MODIS annoal GPP product (MOD17A3; Running et al. 2004) for 2005
from the Numerical Terradynamic Simulation Group, University of Maontana

(hetp:/fwww. ntsg.unn.edu) to evaluate the performance of our model at the continental scale.

2.5, Land cover

To construct a predictive GPP model, we oblained the land cover type for sach
Ameriblux site based on the site descriptions (Table 1) and categerized each site into a clags of
the UMD (University of Marylamd} land-cover classification system. Although the 42
AmeriFlux sites used in this study cover a variety of vegetation classes of this ciassification
system, some classes (e.g., deciduons peedlelzaf forests, open shrublands) were not covered by
any site. We therefors reclassified zall vegetation classes of the UMD classification system to
seven broader classes, following Xiao et al. {2008). Specifically, evergreen neadleleaf forests

and evergreen broadleaf forests were merged to evergreen forests, deciduous needleleaf foresis

13
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and deciduous broadleaf forests to decidnons forests, closed shrublands and epen shrublands to
shrublands, and woody savannas and savannas to savannas.

To estimate GPP for sach 1 ki x 1 km pixel across the comerminous ULS., we
obtained the land-cover type for each pixel from the MODIS land-over map with the UMD
classification system (Friedl et al. 2002}, Similarly, we reclassified the vegetation classes of the
MODIS land-cover map to the seven broader classes. We then used the reclassified land cover

map to specify the land cover of each 1 kin x 1 km cell across the conterminous U.S.

2.0. Mode! development

We developed a predictive GPP model using Cubist based on the site-specific MODIS
and AmeriFlux GPP data. Our explanatory variables included land cover, surface reflectance
{bands 1-7), daytime and nighttime LST, EV], NDWI, fPAR, and LAl and our response
variabie was GPP (g C m™ day™}. Land cover was included as a categorical variable in the
madel. We split the site-level data set of AmeriFlux and MODIS data into a wraining set (2000-
20043 and a test set (2005-2006). If a site only had GPP observations for the period 2000-2004,
the site was only included in the training set; if a site only had GPP observations for the period
2005-2006, the site was only included in the test set; otherwise, the site was included in both
training amd test sets. The training and test sets incloded 40 and 34 AmeriFlux sites,
respectively. We had a total of 4529 and 2240 data samples for the training and test sets,
respeclively. In addition to the full model that includes all of the 14 independem variables, we
also developed a series of models by dropping one or more variables at a time using Cubist. Ta
select the best model, we evaluated the perforrpance of each model based on MAE, RE, and
comelation coefficient, We chose the model with the minimal MAE and RE and maximum

correlation coefficient as the best model. We also evaluated the model performance nzmg the
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Root Mean Sqoared Errer (RMSE), scanerplots of predicied GFP versns observed GFP, and
seasopal variations between the predicted and observed GPP.

We also evaluated the perfortiance of our model in the spatial dormain using leave-one-
out cross-validation. In this approach, the data from a single site was used for validation, and
the data from the remaining sites were used for training. The fraining and validation data were
fromn different sites and wers therefore independent from each other as these sites are genarally
hundreds of klometers away from each other and the spaiial autocorrelation between these
sites was negligible. The leave-one-put cross-validation was conducted for each site,
separately.

2.7. Continental-scale estimation of GPP

As mentioned earlier, the AmeriFlux sites used in this stody are fairly representative of
typical T.5. ecosystem and climate types. We believe that the predictive GPP model
constructed frotn the 42 sites can be extrapolated to the conterminous U.S. We used the modzl
to estimate GPP for each | km x | km cell across the conterminous US. for ¢ach 8-day
interval over the period 2000-2006 using wali-to-wall MODIS data GPP was not estimated for
non-vegetated cells {e.g., urhan, barren), and water bodies. We compared our estimate with the
MODIS GPP product (MOD17A3; Ruaning =t al. 20043, With our 8-day GPP estimates, we

examined the patterns, magnitude, and interannual variability of GPP.

3. Results and Discussion
3.7, Model development
3.1.1 Predictive GPP model
We chose the model containing five explanatory varizbles - land cover, EVI, daylime

LST, LAL and NDWI as the best model to predict GPP at the continental scale (RE = 0.38,
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MAE = 1.22 g Cm” day”, R? = 0.74). The performance of the model was comparable to that
of the full model {RE = 0.37, MAE = 1.19 g C m® day’, R’ = 0.74), Having only five
explanatory variabies could substantially reduce the computational complexity for continental-
scale predictions compared to the full model. The model consisted of five committee models,
each of which was made of a number of rule-based submedels. For instance, the first
committee model was made of the following 23 rule-based submade]s:
Rule 1: if land cover in { Deciduous forests, Mixed forests), EVI <= 1037, and LAl <=
2.64, then
GFP =0.28 + 0.012 LSTy,,
Rule 2 if L§Ta, <= 3.27, EVI = 0,22, then
GPP = -0.64 +4.8EVI + 0.6NDWT + 0.00LAY
Rule 3: if land cover in {Evergreen forests, Shrublands, Savannas, Grasslands,
Croplands), EVI <= (.22, LAI <= 2.64, then
GPP =0,15 + L4EV] + 0.0 L8Ty,
Rule 4: if land cover in {Decidvous foresis, Mixed forests, Savannas, Croplands),
LSTguy > 3.26, EVI <= 0.37, LAI <= 1.78, then

GPF =-1.10 + 0.75LAI + 4. 6EVI

Rule 22; it NDWT <= -0.28, LSTwy > 17.65, EVI > (.58, then
GPP = 10.49 + | 9BVI + 0.02L8T ., = 0.7NDWI
Rule 23: if land cover = Croplands, LS Ty > 29.92, EVI > (.37, then

GPP = -24.85 + 5.47LAI + 58.9EVI + 0.124L53T g~ 0.5NDW1
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where L8Ta, is the daytime LST. As mentioned earlier, the rules of the model could overlap
with ene another. For instance, rule 1 overlapped with rule 4 as land cover could be deciduous
forests in both cases; rules 22 and 23 overlapped with each other as EVT could be greater than

{(0L.58 in both cases,

2. 1.2. Mode! evaluation

The analysis of model residuals indicated that the residuals were oot rendomly
distributed. Low GPP values wers generally associaied with low prediction errors, whereas
high GPF values were asseciated with high prediction errors. The uncertainties of carbon flux
measurements are directly propostional to the magnitndes of the tluxes (Richardson et al.
2008b). The residuals also exhibited a systematic component. For example, large GPP tended
10 have consistentily negative residuals. The residuals also had a random component that arose
partially from errorsfuncertainties in the measured fluxes as well as MODIS data, Ramdom
errors in AmeriFlax GPP data are significant (Hagen et ai. 2006) and these errors may
nltimately limit the agreement between observed and predicted GPP vaiues, In addition, the
explanatory variables included in the mode! could not completely explain the variance of GPP.
Eor example, the independent variables used in the model could not account for nitrogen
availability, and may affect the accuracy of the model.

We compared our GPP estimates with observed GPP for each AmeriFlux site over the
period 2005-2006 (Fig. 2). Our estimates captured most features of observed GPP imcleding
seasonality and year-io-year variations over the period 2003-2006. GPF was under- and over-
predicted for some sites. The model could not capture exceptionally high GPP values for some
sites, such as Audohon Research Ranch (A7), Santa Rita Mesquite (AZ), and Fort Peck {(MT).

We averaged observed and predicted 8-day GPP for each site, and piotted mean predicted GPP
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against observed GPP (Fig. 3). The model estimated GPF fairly well at the zite level (y = 0.95x
+0.21, R* = 0.84, p < (.0001; RMSE = 0.77 g Cm? day'). Gverall, the model slightly under-
and overestimated GPP for values greater or lower than ~4 ¢ C m? day”, respectively, The
model performance alzo varied with site, Large underastimation occurred at seme sitas such as
the North Carolina Loblolly Pine (NCF, NC), Freeman Ranch Mesquite Juniper (FRM, TX),
and Walnot Guleh Kendal! Grasslands (WGK, AZ), whereas large cverestimation occurred at
some sites such as Lost Creek (LC, WI) and Mead Rainfed {MR, NE}. The mods) predicted
GPP remarkabiy well at the biome level (y = 0.99x — 0,13, R = 091, p < 0.00001; RMSE =
0.42 g C m™ day™"), The model stightly overestimated GPP for deciduous forests and cropiands
and slightly underestimated GPF for all other biomes.

The disagreement between predicted and observed GPP values is likely due to the
tollowing reasons, First, the MODIS and tower footprints do not masch with each other and the
vegetation structure at the flux tower could be significantly different from that within the
MODIS footprint (Xiao et al. 2008}, For example, the Tonzi Ranch site (CA) is dominated by
deciduous blue oaks {(Ouercus douglocif) and the understory and open grassland are mainly
cool-season C; annual species (Ma et al. 2007). The MODIS footprint consists of a larger
fraction of grassland than the tower footprint. Blue oaks and grasses have distinct phenologics
{Ma et al. 2007) and therefore had differential contributions to the carbon fluxes integrated
over the MODIS footprint over time (Xiao et al. 2008}, Second, MODIS datz is less sensitive
to changes in wnderstory vegetation and damage to canopies that do not increase canopy gaps,
leading to overestimation of carbon assimilation rates. Third, the independent variables
mctuded in the model conld not aceount for other factors such as nitrogen availability (Clark et

al. 1999, 2004) and stand age (Ryan et al. 2004}, all of which may influence GPP. Finally, we
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estimated GPP for each 8-day interval, and therefore our estimates may oot capture the
variability of GPP within that period. The 8- or 16-day LEST and EVI values do pot always
represent average environmental conditions and average fluxes over the 8- or 16-day period
(Xiao et al. 2008), and the exclusion of days with high and lew wvalues could lead to
underestimation and overestimation of GPP values, respectively. In addition, during drought or
days wich high vapor pressure deficits, the midday GPP may not be representative becanse of

the skewed diurnal variation in GPP (Anthom et al. 1999).

3.1.3. Model validation

We validated our maodel in both temperal and spatia! domains. We {first validated the
model in the temporal domain using the test set over the period 2003-2006 (Fig. 1a). Our
model estimated GPP fairly well (R? = 0.74, p < 0.0001; RMSE = 1.99 g C m”* day™), althongh
it shightly under- and oversstimated GPP values greater and less than 3 g C me day’,
respectively. By contrast, the MODIS GPF product estimated GPP for the AmeriFlux sites
with a RMSE of 243 g C m* day” (v = 0.50x + 1.01, R? = 0.38, p < 0.0001; Fig. Ib). The R
andt RMSE of our moedel were 28% higher and 18% lower than those of the MODIS GPP
product, respectively,

We then validated the model in the spatial domain vsing leave-one-out cross validation.
The cross-validation also showed that our mode] estimated GPP fairly weil (Fig. 4}. The model
performance varied with site and biome 1ype. Our medel had a higher performance for forest
ecogystems and croplands than shrublands, savannas, and grasslands. We averaged observed
and predicted 8-dey GPP for cach site, and then plotted mean predicted GPP against observed
GPP (Fig. 5). The cross-validation showed that oar model estimated GPP fairly well at the site

level (v = 0,73x + 1.07, R* = 0.69, p < 0,0001; RMSE = 1.19 g C m? day”) althengh the slope
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and R* were Jower and the RMSE was higher than those of the validation in the temporal
doemain, respectively. The cross-validation also showed that our model estimated GPP
remarkably well at the bivme level (y = 0.86x + 0.48, Ri=0.91, p< 00001, RMSE=033gC
m? da}"l),

The validation of the medel in both temporal and spatial domains showed that the
performance of owr model is encouraging, given the diversity in ecosystem types, age
structuras, fire and ingect disturbances, and management practices. Our approach extensively
used eddy covariance flux tower data invelving typical U.S. ecosystem znd climate types. Our
study demonstrated that our empirical approach has great potential for npscaling flux tower

GPP data to continental scales across a variety of biomes.

3.2. Gross Primary Production
3.2.1. Seavonal patterns

Our §-day GPP estimates were highly consirained by eddy flux data, and provided a
spatially and temporaliy continuens measure of GPP with high spatial and ternporal resolstion
for the conterminous U.S., which made it possible to examine the patterns, magnitude, and
interannual variability of GPP acrass the U8, Our estimates showed that GPP exhibited large
spatie] variability and strong seasonal fluctuations (Fig. 6). The seasonal patterns of GPP and
its spatial variability teflected the controlling effects of climate conditions. In the spring
months, the Southeast and the Gulf Coast significantly assimilated carbon with GPP valoes
reaching ~100-250 g C m™” mo™' as the growing season started in early to mid-spring in these
regions. The Pacific Coast is dominated by evergreen forests, and these ecosystems also
assimilated carbon due to mild temperatures and moist conditions during the spring (Anthoni et

al. 2002). The Mediterranean regions in California alse assimilated carbon in the spring
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because of a surplus of precipitation and relatively warm temperatures (Xu & Baldocchi 2004;
Ma et al. 2007). By contrast, the Upper Great Lakes region and the northern Great Plains are
dominated by croplands with most crops planted between April and June (Shroyer et al. 1996),
whereas the New England region and the northern portion of the Upper Great Lakes region are
domingted by temperate-boreal transitional forests. The reletively late greenup in these regions
led o low GPP.

In the summer months, the castern U8, the Ceastal Pacific Northwest, and some
1egions in Califorria exhibited high GPP values (~250-450 g C m? mo™') owing to favorable
temperature and 301l moisture conditions, while the vast majprity of western lapdscapes,
incloding the Great Basin, the Colorado Platean, and the western Great Plains exhibited much
lower GPP values due 1o spare vegelation and precipitation deficits.

In the fall months (September-November), the GPF values of the Southeast and the
Gulf Coart substantially decreased relative to those in the summey becanse vegetation began o
senesce and days became shorter in these regions. The spatial patterns and magnitude of GPP
were similar to those of the spring. The Upper Great Lakes region and the Great Plains had
very low GPP values due to the harvesting of craps.

In the wintter months (December-Febrnary), the majority of the U.§. had little or no
rhotosynthesis as the canopies of most ecosystems were dormant. Some regions in the Pacific
Coast, California, the Gulf Coast, and the Southeast slightly assimilated carbon. because of the
dominance of evergreen forests and mild temperatures (Waring & Franklin 1979; Clark et al.
1999; Anthoni et at 2002; McGarvey et al. 2004). For example, Douglas-fir, & major species in
the Pacific Northwest and California, is known to be highly plastic and able to photosynthesize

in winter when temperatores are abeve the freezing point {Xiao et al. 2008).
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Fig. 7 showed the trajectories of the spatially averaged and integrated B-day GPP for
each biome from Febroary 2000 to December 2006, Deciduous forests ad croplands had the
largest intra-annual variability in spatial averaged GPP, followed by mixed forests; evergrecn
forests and savanngs had intermediate intra-anmual variability; grasslands and shrublands had
the least variability (Fig. 7a). The temyporal variability ol spatially integrated GPP (or spatial
total) also showed clear dependence on biome (Fig. 7). Collectively, the terrestrial ecosysterns
substantially assimilated carbon and had a peak spatial total of 50-55 Tg C day’. Taken
separately, croplands had the highest intra-annoal variability in spatially integrated GPP, with a
peak spatial total of 25-30 Tg C day”, followed by deciduous forests; evergreen forests, mixed
forests, savannas, and grasslands had inmtermediate intra-annoal variability in spatially
imtegrated GPP; shrublands had the least variability. Both spatially averaged amnd integrated

GPPF showed interannual variability for each biome.

3.2.2, Annual fluxes

We calculated annual GPP for each year over the period 20041-2006 from our 8-day
GPP estimates, and then calculated the average anmnal GPP over the 6-year period (Fig. 8).
Annual GPP varied considerably over space, and exhibited a large spatial gradient from the
east o the west. The Gulf Coast, the Southeast, the coasta! Pacific Northwest, and a part of the
Pacific Southwest had high annual GPP (~1500-2000 g C m” w''); the Midwest and the
Northeast had intermediate values (~1200-1500 g C m™ yr'), and the majority of the western
half of the conntry including the Southwest, the western Great Plains, and the Rocky Mountain
region had GPP values generally lower than 500 g C m® yr'.

We estimated a total gross carbon uptake of 7.06 Pg C '} for the conterminous U.5.

over the period 2001-2006. A quantitative breakdown of the 6-yr average annual GPP tmap by
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regions (Table 2) showed that the North Central and Scuth Central regions had the highest
GPP, foliowed by the Southeast, the Rocky Mountain region, and the Northeast, the Pacific
MNorthwest and the Pacific Southwest had the lowest GPP. The spatially averaged annnal GPP
of the U.S. was ~1100 g C m” yr'! (Table 2). Repionally, the Southeast had the highest
spatially averaged annval GPP, followed by the Northeast and the South Central regions; the
North Central region, the Pacific Northwest, and the Pacific Southwest bad intermediate
values, the Rocky Mountain region had the lowest spatially averaged annual GPP.

A quantitative breakdown of the &-yr average annual GPP by biomes (Table 3} showed
spatially integrated annual GPP varied with biome. Croplands had the highest spatially
integrated annoal GPP; shrublands had lowest annual GPP; other biomes including evergreen
forests, deciduous forests, mixed forests, savannas, and grasslands had intermediate annoal
GPP. Spatially averaged annual GPP also varied with biome {Table 3). Daciduons forests had
the highest spatially averaged annnal GPE, followed by evergreen forests, mixed forests,
croplands, and savannas; grasslands had intermediate valoes, shriblands had the lowest values.

We compared our annual GPP estimate with annual GPP estimale from the MODIS
GPP product (MOD17A3; Running et al. 2004} for 2005 (Fig. 9). Both estimates showed a
large spatial gradient from the east to the west: the Southeast had the highest annual GPP; the
Midwest had intermediate annua! GFP, while the Rocky Mountain region had the lowest GPF.
Both estimates showed that annual GPP is ~300 g C m* yr'! in the Rocky Mountain region.
Annual GPP is also very similar in the New England region and the Upper Peninsula of
Michigan. However, large discrepancies were observed between our estimate and the MODIS
GPF product. Our estimate exhibited larger spatial variability than the estimate from the

MODMS GPP product. Moreover, compared to our estimate, the MODIS GPFP product
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substantially underestimated GPP in some regians, particularly the Midwest and the coastal
Pacific Northwest where ecosysterns are highly productive. For example, our annwal GPP for
the croplands in the Midwest is ~1200-1500 g C m™ yr”', while the MODIS annual GPP is only
=700 g Cm?® yr''. In many areas in the Southeast, our annual GPP estimate is ~1500-2000 g C
m* yr, while the MODIS annnal GPP is only ~1000-1500 g Cm® yr!.

The large discrepancies in annual GPP between our estimate and the MODIS GPP
product can be attributed te the following reasons. First, the MODIS GPF product was
developed vsing an algorithm optirmized for global applications and metsorological ficlds with
coarse resolution (1 by 125 depree) and large uncertainties (Zhao et al. 2000), and thereby
tikely contributed 2o the smaller spatial variability of MODIS GPP and affected the accuracy of
the MODIS GPP estimates. Second, the maximum tight use efficiency (ema) is an essential
parameter of the LUE model used to develop the MODIS GPP product. The €44, 15 only 0.68 g
C MI'! for croplands in the MOD17 alporithm (Heinsch et al. 2003), which is likely too low
for croplands and results in substantial underestimation of cropland GPP. Zhang et al. {2008}
showed that MODIS annual GPP for an nrigated cropland in China was only about 20-30% of
annual GPP derived fom eddy covariance flux measurements, and attribticed the substamial
underestimation of cropland GPP to the underestimation of & in the MODI17 algorithm.
Third, our estimate was highly constrained eddy flux data, while sotme geographical regions
and biomes are underrepresented by the AmeriFlux network, which could affect the accracy
of our estimaies. For exampls, we merged savannas (tree cover 10-30%) and woody savannas
{trez cover 30-60%) together in the development of the model becanse no sites representing
typical savannas with tree cover below 30% were available in the model, which could lead to

overestimation of GPP for areas that were classifisd as savannas {trea cover 10-30%).
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(flobal annual GPP has been estimated 1o be 120 Pg C yr'' using ‘%0 measurements of
atmospheric C0; {Ciais o1 al. 1997) and 110 Pg C }fr'l from 2001 1o 2003 nsing the MODIS
GFP product (Zhao et al. 2005}, Our estimates suggested that the terrestrial ecosystems in the
conterminous [1.8. acconnted for 5.9-6.5% of the global annual GPP, while its land area
accounts for ~5.4% of the global land area. Our estimate of ULS. annval GPP was higher shan
pther estiimates. For example, the average anmual GPP over the period 2001-2006 derived trom
MODIS GPP product {Rumning et al. 2004) was ~6.2 Pg C yr™'. Our estimate was about 14%
higher than the MODIS GPP estimate. Potter et al. (2007} estimated anneal NPP between 2.67
and 2.79 Pg C yr'! over the period 2001-2004 using MODIS data and the NASA-CASA model.
Our estimate was alzo higher than that estbmated by Potier et al. (2007} assuming that NPP iz
about half of GPP (Lloyd & Farquhar 1996, Waring <t al. 1998).

Our predictive mods]l has advantages over empitical or process-based ecosystem
madels, Most ecosystem models are dependent on site-ievel parameterizations that are nsed as
default parameters for a much broader spectrum of vegetation types and conditions, which may
limit the accoracy of model simulations over large arces {¢.g., Prince and Goward 1995;
Running et al. 2004; Xiao et al. 2009). By contrast, our model was highly constrained by eddy
flux data from a number of towers encompassing a range of ecosystem and climate types, and
may lead to model parameters that are more representative of the full speccrum of vegetation
and c¢limate types and thereby more accurate esfimates of carbon fluxes at repional scales.
Moreover, our model consisted of rule-based, multivariste linear regression models, and is
easier o understand and vnplement. Our model conld substantially reduce computationsl
complexity comparsd o many ecosystem models. On the other hand, however, our medel also

has disadvantages over empirical or process-based ecosystem models. Our model is an
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empirical approach, and does not involve ecosystem processes such as phetosynthesis and
nitrogen cycling. Moreover, our madel did not explicitly consider some factors influencing
GPP such as nitrogen availability, stand age, and disturbance history that may be explicitly
simulated in process-based ecosystem modets (e.g., Aber et al. 1997). All these modet
differences contriblited to the discrepancies in annual GPP estimates between our empirical

approach and ecosystem models.

3.2.3. Imterannual variabitity

The U.S. annual GPP varied between 6.91 and 7.33 Pg C w over the period 2001-
2006. The years 2002, 2004, and 2006 had lower GPP values relative o 2001, 2003, and 20035.
Annual GPP exhibited positive and negative anomalies for each year, and the spatial patterns
of these anemalies alse varied from year to year (Fig. 10). The annual GPP anomalies were
likely due to climate variability, disturbances, and management practices. Most notably, larpe
negative PP anomalies occnrred in the Great Plains in 2002 and 2006. Moderate to severe
drought affected over 504% of the country in both years, including the Southwest, the Great
Plains, the Gulf Coast, and the coastal Southesst, perticvlarly Texas and Oklahoma (U.S.
Drought Monitor, hitp:www. droeghtunl.edu). The annual precipitation of these two vears
was 467 and 433 mm for the U.S., respectively - lower than the 30-year mean anmua]
precipitation (480 mm} taken over the PRISM climate database. Our GPP anomzly maps
showed large negative GPP anomalies in many of the drought-affected regions. Notably, large
negative GPP anomalies occurred in the Great Plains in 2002 and 2006, Qur results further

demonstrated savere dronght covld snbstanmially affect ecosystem carbon fluxes (Xiao et al

2009).
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At landscape to regisnal scales, anmnal GPP also exhibited large anomalies. For
example, our results showed large negative GPP anomalics in the region experienced the
Biscuit fire in Oregonr (Fig. 11}. The 2002 Biscuit Fire was among the largest forest fires in
nwodern U.8, history, encompassing > 2000 km? primarily within the Rogue-Siskiyou National
Forest (RSNF} in southwest Oregon (Campbell et al., 2007; Thompson et al. 2007). Large fires
sich as the Biscuit Fire demagad both overstory andfor understory vepetation, leading (o a
reduction in GPP and large negative GPP anomalies in the region in 2003, which may result in
net carbon release into the atmosphere. Numerous wildfires occuzred over the western half of
the country due to dry weather and high winds, buming 1.5-4.0 x 107 km® of forests fram 2000
to 2006 (U.S. Fire Administration, hitp:/fwww.usfa.dhs.gov). The drought along with wildfires
likely led 10 the negative GPP anomalies in the wester half of the UL,

COnr results also showed horricapes could reduce GPP and lead 1o large negative GPP
anomaties {Fig. 12). For example, Hurricane Katrina oceurred in iate Augost 2005 affected
over 2 x 10" km® of forest across Mississippi, Louisiana and Alabama, with damage ranging
from downed trees, snapped tronks and broken limbs to stripped leaves (USDA Forest Service,
http:/fwww srs.fs.usda.gov), Forest inventories indicated that the potential timber losses from
Hurricane Karrina amounted to roughly 1.2 x 10° m® (USDA Forest Service,
http:/twww srs.fa.usda gov). Qur results showed large negative GPP anomalies in 2006 in the
Gulf Coast region severely affecled by Hurricane Katrina (Fig, 12), The reduction in GPP and
increased B, resulting from increased litter could lead to substantal carbon release into the

avmosphers {Chambers et al. 2007},

4. Conclusions
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We used a regression tree approach and remotely-sensed data frem MODIS to upscale
AmeriFlux GPP data o the continental scale and to produce a GPP dataset with 8-day temporal
resofution and T km spatial resolution for the conterminous U.S. over the peried 2000-2008,
Our results demonstrated that our empirical approach has great potential for upscale eddy fux
GPP data to large areas across multiple biomes. Our GPP estimates provided a spatialiy and
temporally continnous measure of gross primary production for the conterminous U.S, Cur
estitnates also provided an alternative, independent dataset from the MODIS GPP product and
simulations with biogeochemical models. Our GPP estimates were highly constrained by flax
tower data from towers encompassing a large range of ecosystem and climate (ypes as well as
disturbance history. Our approach can be applied to the entire North America, other geographic
regions including Europe, Southeast Aszia, and South America, or to the gicbal scale, and to
produce continuous GPP estimates over continents or the globe. This approach can also be

used to upscale other fluxes including evapotranspiration to large areas.

Our GPP estunates exhibited large spatial variability and strong seasonal variations,
which reflected the contrelling effects of climate conditions and vegetation distnbutions. We
estimated a total gross carbon ptake of 7.06 Pg C yr' for the conterminous U.S, over the
period 2061-2008, Annual GPP varied substantially with geegraphical region and biome type.
Our annval GPP estimale exhibited large spatial variability than the MODIS GPP product
(MOD17A3; Runping et al. 2004, Our regults also showed that the 1.5, annual GPP varied
between 6.91 and 7.33 Pg C wi™' over the 6-year period, Extreme climate events (e.g., drought)
and disturbances (e.p., fires and hurricanes) reduced annual GPP at regional scales and could

have a significant impact on the LS. net scosystem carbon exchangs. The interanmual
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variability of GPP was mainly caused by these extreme climate events {e.g., drought) and

disturbances {.g., fire, hurricane).
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Table 1. Site descriptions including name, latitude, longitode, vegetation type, years of data

available, and references for each flux site.

Slie State Lat  Lon Vegetation type Year References

Apndubon Research AZ 359 1105 Grasslands 2002-200G

Ranch (ARR)

Santa Rita Mesquile AZ 31.82 11087 Savannas 2004-2006  Watts ot al. 2007

(SR

Walnui Gulch AZ 3174 -09% Grosslands 20042006

Kemdall  Grasslands

{WGK)

Sky Qaks Od Stand CA 3337 -lla6  Shrublands 20042006  Lipson et al. 2005

(500}

Sky Oaks Young CA 1338 -11662 Shrublands 2001-2006 Lipsan at al. 2005

stand (S0

Tonz Ranch (TR} CA 3543 -12097  Savannas 2001-2006  Ma eral. 2007

Vaira Ranch (VR) CA 3341 -12095  Grasslands 2001-2006 Xu and Baldocchi
2004

Miwot Ridge Forest O 4003 -105.55  Ewvergreen forests 20002083 Monson et al. 2002

{NEF)

Kennedy Space FL 2861 -BDST  Shrublands 2000-2006  Dore et &l 20003

Ceniter  -Serub Qak

(KSC)

Austin Cary - Slash PL 2974 -312X  Evergreen foresls  2001-2003  Powell ed gl 2008

Pine (AC)

Bondville (Bor} IL 4001 8829 Croplands 2001-20046 Hollinger et al
2005

FNAL  agriculural IL 41 B6 -B%22 Croplands 20052006

site (FAg}

FNAL Praifie site IL 4184 -3824  Grasslands 2004-2006

{FPr}

Morgan Mocroe IM 39.32 -8641  Deciduous forssts  2000-2005  Schoud et al. 2000

State Porest {MMS)

Harvard Forest EMS MA 4254  -T2A17 Deciduons forests  2000-200d4  Urbanski = al

Tower (HFE} 2007

Harvard Forest MA 4254 -72.18  Evergreee fmesls 2004

Hemlock Sive {HEH)

Lile Prospect Hill WA 4254 7218 Decidugus forests  2002-2005

{LPH}

Howland forest {HF) ME 4520 .52 Evergresn forests 20004 Hollinger et al,
15949, 2004

Howland forest (wesi  ME #4521 6873  Deciducus forests  2000-2004  Hollinger e al.,

tower) (HFW) 1599, 2004

Sylvania Wilderness Wl 46,24 8233 Mixed foresis 2002-2006  Deasai et al, 2005

Area (SWA)

Liniv, of  Mich MI 45556 2471 Mixed forests 2000-2003 Oough e al, 2008

Biclogical  Stalion

{(LUME)

Missouri Ozark (M) MO g7 L0220 Dreciduwons Forests 20042006 Gu ex al 2006,
2007

Croodwin Creck (GC) ME 3435 2097 Grasslands 20022000

Fort Peck (FPe} MT 43,31 -i05.10 Grassiands 2600-2006

Dnuke Borest loblolly NOC 3508 71909  Evergreen forests  2001-2005  Gren et sl 1994,

pine {DFE) 2006
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Duke Forest NC 35657 .T0.10  Deciduous forests 20032005 Pataki ahd Oren,
hardwocds {DFH) 20013

MNarih Cadlina  NC 3580 -TE6T Evergreen foresis 2005-2006 Woormels et al
Ioblolly pine (NCP} sutmitbed

Mead rigated NE 4117 -%648  Croplands 2001-2005 Verma et al, 2005
continuons maize site

(MIC)

Mead utigaled NE 4116 9647 Craplands 200 2005 Verma et al. 2005
rivaticn (MIR)

Mead minfd (ME) NE 4118 96,44 Croplands 2001-2005 Verma ot al, 2005
Bartlett Experimental NH 4406 7125  Deciduous forests 20042005 Jenking et al., 2007
Forest (BEF)

Toledo Ozk OH 41,58 B384 Savannas 2004-2005 Meormet: e al
Openings (TOO) 2008b

ARM Klahoma 0K G611 97449 Croplands 20052006

{ARM)

Metoline intermediate QR 4445 -121.56 Evergreen forests  2003-2005  Law et al. 2003
aged ponderosa pine Irvine et al. 2007
(MI)

Metoling new woung OR 4432 -121.61 Bvergreen forssts  2004-3005  Law e al. 200%;
pirte { M) Irvine at al. 2007
Brookings {Bro) S 44357 9584 Grasslands 2004 - 2006

Freeman Banch TX 2095 9800  Savannas 2004 -2

Mesquite Junipey

{FRM}

Wind River Crane WA 4583 -12195  BEvergreen forests 2000-2004 Falk = al., 200%
Site (WRL)

Lost Creek (LOY Wl 4508 -89.98 Decidoous forests  2000-2003

Willow Cresls (WC) WI 4581 9008  Decideous forests 20002006 Cook st al,, 2004
Wiscomsin WI 4673 923 Deciduous forests 2003 Moormets et al
inlermediaie 2008a

hacdwood (WIH)

Witoon#in ratwre red W1 46874 9117  Evergreen forests  2002-2005  Noormels e al
pine [MRF} 2007
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Table 2. Spatially averaged (spatial mean) and integrated (spatial total} annual GPP over the
petiod 2001{-20006 for each region: Northeast (NE), North Central {NC), Southeast (SE), South
Central {3C), Rocky Mountain {RM), Pacific Northwest {PNW), and Pacific Southwest

{P5SW).

GFPP NE NC SE SC RM PNW PSW US

Spatial Mean 160420 1212.55 203391 145797 43820 1007.35 92797 1103.92
gCm?y")
Spatisl Total 067 200 100 193 08 036 029 7.06

{PgCyr'")
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Table 3. Spatially averaged (spatial mean) and integrated (spatial total) annual GPP over the
period 2001-2006 for each vegetation type: evergreen forests (EF), deciducus forests (DF),

mixed forests (MF), shrublands {Sh}, savannas (Sa), grasstandg (Gr), and eroplands (Cr).

GPP EF DF ME Sh Sa Gr Cr Al

Spatial Mean  1431.26 1774.74 144731 303798 1530096 33924 150038 1103.92

(gCm?yr)
Spatial Total 085  0.83 067 033 063 08 282 706

(PsCyr™)
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Figure captlons:

Fig. 1. Scatierplots of abserved B-day GPP versus predicted B-day GPP. (g} Our estimate (y =
.85x + 0.37, R? = 0.74, p < 0.0001}. (b) MODIS GPP product (Running et al. 2004) {y =
0.50x + L.0L, R? = 0.38, p < 0.0001), For each piot, the solid line is the 1.1 ling, and the dashed

hne is the regression line.

Fig. 2. Examples of time series plots of observed (open circles) and predicted (solid circles) 3-
day GPP (g C m” day') for each AmeriFlux site over the period 2005-2006: {1) evergreen
forests — AC {FL) and MRP {WT}: (2) deciduous forests — DFH (NC), (3) mixed forests - SWA
(MI); {4y shrublands — KSC (FL}; (5) savannas — SRM (AZ), TR (CA), and VR (CA); {6)
grasslands — ARR (AZ} {¥) croplands — MIC {NE). For x-axis, the starting dates {month/day)
of every two 8-day intervals are provided in parentheses under interval numbers, Dashed lines
are used to separate 2005 from 2006. Site abbreviations are used here, and their full names are

given in Table 1.

Fig. 3. Scatterplot of observed mean §-day GPP versus predicted mean 8-day GPP across the
AmeriFlux sites. Error bars are standacd errors {defined as the stapdard deviation divided by
the square root of the mumber of oheervations) of the observed and predicted 8-day mean GPP.
The solid line indicates the 1:1 line, and the dashed line indicates the regression line (y = 0.895
* x4+ 021, R’ = 0.84, p < 0.0001). Site abbreviations are used here, and their full names are

given i Table 1.

Fig. 4. Examples of leave-one-out cross-validation scatterplots with observed 3-day GPP
versus predicted B-day GPP: (1) evergreen forests — HE (y = (.85x+1.00, RE=091,p <
0,0001) and NRF (y = 0.67x + (.63, R%= 0.63, p < 0.0001}; {2) deciduous forests — HEE (y =

0.97x + 0.24, R* = 0.87, p < 0,0001) and WC (y = 0.73x + 0.62. K= 0.86, p < 0.0001)% {3)
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mixed forests — SWA (y = 0.89x + 0.03, R*= {.89, p < 0.0001) and UMB (y = 0.92x + 0.66,
R*= (.93, p < 0.0001); (4) shrublands — KSC (v = 0.28x + 2.35, R? = 0.14, p < 0.0001); (5)
savannas - FRM (y = 0.83x + 1.94, R® = 049, p < 0.001); {6} grassiands ~ GC {y = 0.76x +
2,03, R? = 0.55, p < 0.0001)% (7) croplands - MR (y = 1.04x + 0.81, R® = 0.86, p < 0.0001).
The solid Lne indicates the 1:1 line, and the dashed line indicates the regression line, Site

abbreviations are used here, and their full names are given in Table 1,

Fig. 5. Leave-one-out cross-vaiidation scatterplot of observed mean 8-day GPP versus
predicted mean 8-day GPP across the AmeriFlux sites, Error bars are standard errors of the
observed and predicied 8-day GPP. The solid line indicates the 1:1 line, and the dashed line
indieates the regression line (y =0.73 * x + 1.07, R? = 0.69, p < 0.0001). Site abbreviations are

nsed here, and their full names are given in Table 1.

Fig. 6. Monthly GFP (g C m° mo'}) for the conterminous U.S. from Jamvary through
December in 2005.

Fig. 7. Spatially averaged and integrated 8-day GPP for each biome across the conterminous
U.8. over the period 2001-2006. () Spatially averaged 8-day GPP (g C m” day™). (b) Spatially
integrated 8-day GPP {Tg C day ™).

Fig. 8. Average annual GPP {g Cm™ yr'') of the conterrninous U.S. over the period 2001-2006.
The gray lines indicate state boundaries, The black lines indicate boundaries of geographical
regions: Northeast (NE), Southeast (SE), North Central (NC), South Central {SC), Rocky
Mountain (RM3}, Pacific Northwest (PNW), and Pacific Southwesat (PSW).

Fig. 9. Annual GPP (g C m* }T'I} for the conterminous 1.5, for 2005, {z) Our estimate. (b) The

MODIS GFP product (MODITA3, Running et al. 2004).
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Fig. 10. Annual GPP anomalies (g C m? yr''} and annual precipitation anomalies (mm) for the
conterminous U.S. for 2002 and 2006. The anomalies of antwal GPP were relative to the 6-
year period from 2001 to 2000, and the anomalies of annual precipitation were relative 1o the
30-year period from (971 to 2000 taken from the PRISM climate database (PRISM Climate
Group 2004},

Fig, 11. [mpact of the Biscuit Fire (> 2000 km?} in Oregon on anmial GPP in 2004. (a) Burned
area. (b} The dots represent fire detections from Terra MODIS and Aqua MODIS MODIS
(USDA Forest Service MODIS Active Fire Mapping Program, http:/factivefiremaps.fs.fed.us).
{c) Burn severity based on the differznce normalized burn ratio (dNBE; Lutes et al. 2004) from
Landsat Thematic Mapper (TM) data acquired before and immediately after the fire. {(d)
Anneat GPF in 2003 (g C m? yr'},

Fig. 12. Impact of Hurricane Katrina on annual GPP in 2006, The units are g ¢ m™ yr''. The
white tines indicate the jsotachs, inciuding tropical storm, humricane category 1, and hurricane

category 2.

)
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Fig. |. Scatterplots of observed 8-day GPF versus predicted 8-day GPP. {a) Our sstimate (y =

0.85x + 0.37, R? = 0,74, p < 0.0001). (b) MODES GPP product (Running ¢ al. 2004) (y =

0.500 + 1.01, R =058, < 0.0001). For each plot, the solid line is the 1.1 line, and the daghed

ling is the regression line,
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Fig. 2. Examples of time series plots of observed (open circles) and predicted (solid circles) 8-

day GPP (g C m? day™) for each AmeriFlox site over the peried 2005-2006: (1) evergreen

forests — AC (FL} and MRP {(WT1): (2) deciduons forests = DFH (NC}; (3) mixed forests — SWA

{MI); (4) shrubiands - KSC (FL); (5) savannas - SRM (AZ), TR (CA), and VR {CA); (6}
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grasslands — ARR (AZ); (7) croplands — MIC (ME). For x-axis, the starting dates {month/day)
of every two 8-day intervals are provided in parentheses vnder interval nombers. Dashed lines

are used ta separate 2005 fram 2006. Site abbreviations are used here, and their full names are

pivern in Table L.
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Fig. 3. Scatterplot of observed mean B-day GPP versus predicted mean 3-day GPP across the

AmeriFlux sites. Error bars are standard errors (defined as the standard deviation divided by

the square root of the number of observations) of the observed and predicted 2-day mean GPP.

The solid line indicates the 1:1 line, and the dashed line indicates the regression line (y = 0.95

x4+ 021, R = 0.84, p « 0.0001). Site abbreviations are used here, and their full names are

given in Table 1.
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Fig. 4. Examples of leave-one-out cross-validation scatterplots with observed 8-day GPP

versus predicted §-day GPP: {1) evergreen forests — HF (y = 0.85x+1.00, R = 09, p <
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0.0001) and NRF {y = 0.67x + 0.63, R* = 0.63, p < 0.0001}; (2) deciduous forests — HFE (y =
0.97x + 0.24, R>= 0.87, p < 0.0001) and WC (y = 0.73x + 0.62, R’= 0.86, p < 00001} (3)
mixed forests — SWA (y = 0.89x + 0.03, R®= 0.8, p < 0,0001} and UMB (y = 0.92x + .66,
R*= 0.93, p < 0.0001); {4) shrublands — KSC (y = 0.28x + 2.35, R?= 0.14, p < D.0D01); (5)
savannas — FRM (y = 0.83x + 1.94, R® = 0.49, p < 0.001); {6) grasslands — GC {y = 0.76x +
2.03, R* = 0.55, p < 0.0001); (7) croplands - MR (y = 1.04x + 0.81, R? = 0.86, p < 0.000}).
The solid line indicates the 1:1 line, and the dashed line indicates the regression fine. Site

abbreviations are used here, and ther full names are given in Table 1.
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Fig. 5. Leave-one-out cross-validation scatterplol of observed mean 8-day GPP versns
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observed and predicted 8-day GPP. The solid line indicates the 1:1 line, and the dashed line

indicates the regression line {y = 0.73 * x + .07, R® =0.69, p <0.0001). Sitc abbreviations are

nsed here, and their full names are given in Table 1.
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Fig. 7. Spatially averaged and integrated 8-day GPP for each biome across the conterminons
U.S. over the period 2001-2006. (a) Spatially averaged 8-day GPP (g C m? day')), (b) Spatially

integrated 8-day GPP (Tg C day’').
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Fig. i1. Impact of the Bizeait Fire (> 2000 kl‘['lz} in Oregen on annnal GPP in 2004, (2) Burned
area. (b} The dots represent fire detections from Terra MODIS and Agua MODIS MODIS
{USDA Porest Service MODIS Active Fire Mapping Program, bstp:/factivefirernaps.fs.fed.us).
{c} Burn severity based on the difference normalized burn ratio {dMBE; Lutes et al. 2004} from
Landsat Thematic Mapper (TM) data acquired before and immediately after the fire. (d)

Annual GPP in 2003 (g C tm yr“}.
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Fig. 12. Impact of Husricane Katrina on annnal GPP in 2006. The units are g C m? yr'l. The
white ¥ines indicate the isotachs, including tropical storm, hurricane category 1, and hurricane

category 2.
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