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69 Abstract The quantification of carbon fluxes between the terrestrial biosphere and the 

70 atmosphere is of scientific importance and also relevant to climate-policy making. Eddy 

71 covariance flux towers provide continuous measurements of ecosystem-level exchange of 

72 carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, 

73 these measurements only represent the fluxes at the scale of the tower footprint. Here we used 

74 remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to 

75 upscale gross primary productivity (GPP) data from eddy covariance flux towers to the 

76 continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers 

77 encompassing a wide range of ecosystem and climate types to develop a predictive GPP model 

78 using a regression tree approach. The predictive model was trained using observed GPP over 

79 the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and 

80 leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then 

81 used the model to estimate GPP for each 1 km x 1 km cell across the U.S. for each 8-day 

82 interval over the period from February 2000 to December 2006 using MODIS data. Our GPP 

83 estimates provide a spatially and temporally continuous measure of gross primary production 

84 for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated 

85 that our empirical approach is effective for upscaling eddy flux GPP data to the continental 

86 scale and producing continuous GPP estimates across multiple biomes. With these estimates, 

87 we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a 

88 gross carbon uptake between 6.91 and 7.33 Pg C yr"1 for the conterminous U.S. Drought, fires, 

89 and hurricanes reduced annual GPP at regional scales and could have a significant impact on 

90 the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. 

91 GPP were dominated by these extreme climate events and disturbances. 

4 



92 1. Introduction 

93 The quantification of ecosystem carbon fluxes for regions, continents, or the globe can 

94 improve our understanding of the feedbacks between the terrestrial biosphere and the 

95 atmosphere in the context of global change and facilitate climate policy decisions (Law et al. 

96 2006). Gross primary productivity (GPP) is the amount of carbon fixed by vegetation through 

97 photosynthesis and a key component of ecosystem carbon fluxes and the carbon balance 

98 between the biosphere and the atmosphere (Makela et al. 2008). The accurate estimation of 

99 GPP is essential for the quantification of net ecosystem carbon exchange (NEE) as the latter is 

100 often a small difference of two large carbon fluxes - GPP and ecosystem respiration (R»). The 

101 estimation of GPP for regions, continents, or the globe, however, can only be made by using 

102 ecosystem models (e.g., Prince and Goward 1995) and/or remotely sensed data (e.g., Running 

103 et al. 2004). 

104 Eddy covariance flux towers have been providing continuous measurements of 

105 ecosystem-level exchange of carbon, water, and energy spanning diurnal, synoptic, seasonal, 

106 and interannual time scales since the early 1990s (Wofsy et al. 1993; Baldocchi et al. 2001). At 

107 present, over 500 eddy covariance flux towers are operating on a long-term and continuous 

108 basis around the world (FLUXNET, http://daac.ornl.gov/FLUXNET). This global network 

109 encompasses a large range of climate and biome types (Baldocchi et al. 2001), and provides 

110 probably the best estimates of ecosystem-level carbon fluxes. The flux towers directly measure 

111 NEE that can be separated into two major components: GPP and Re (Reichstein et al. 2005; 

112 Desai et al. 2008). However, these estimates only represent fluxes at the scale of the tower 

113 footprint with longitudinal dimensions ranging between a hundred meters and several 

114 kilometers depending on homogeneous vegetation and fetch (Schmid, 1994; Gockede et al., 
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115 2008). To quantify the exchange of CO2 between the terrestrial biosphere and the atmosphere, 

116 significant efforts are needed to scale up flux tower measurements from the stand scale to 

117 landscape, regional, continental, or global scales. 

118 Satellite remote sensing is a potentially valuable tool for scaling-up efforts (Running et 

119 al. 1999; Turner et al. 2003; Xiao et al. 2008). Several studies have integrated flux data with 

120 remote sensing data to quantify GPP over large areas. Zhang et al. (2007) estimated GPP for 

121 the Northern Great Plains grasslands using satellite and flux tower data. Yang et al. (2007) 

122 linked satellite observations to flux tower GPP data for the estimation of GPP for two broad 

123 vegetation types in the U.S. using a machine learning approach. Despite these efforts, to our 

124 knowledge, no study has upscaled AmeriFlux GPP data to the continental scale to produce 

125 spatially-explicit estimates of GPP across multiple biomes and to examine the patterns, 

126 magnitude, and interannual variability of GPP over the conterminous U.S. 

127 Here we used a regression tree approach and remotely-sensed data from the Moderate 

128 Resolution Imaging Spectroradiometer (MODIS) to upscale flux tower GPP to the continental 

129 scale and produced wall-to-wall GPP estimates for multiple biomes across the conterminous 

130 U.S. First, we developed a predictive GPP model based on site-specific MODIS and flux tower 

131 GPP data, and validated the model using eddy flux data in both temporal and spatial domains. 

132 Second, we applied the model to estimate GPP for each 1 km x 1 km cell across the 

133 conterminous U.S. for each 8-day interval over the period 2000-2006 using wall-to-wall 

134 MODIS data. Third, we examined the patterns, magnitude, and interannual variability of GPP 

135 across the conterminous U.S. 

136 2. Data and Methods 

137 2.1. Regression tree approach 
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138 We used a modified regression tree approach implemented in the commercial software, 

139 Cubist, to upscale flux tower GPP to the continental scale. Regression tree algorithms typically 

140 predict class membership by recursively partitioning a dataset into more homogeneous subsets. 

141 The partitioning process splits each parent node into two child nodes, and each child node is 

142 treated as a potential parent node. Regression tree models can account for a nonlinear 

143 relationship between predictive and target variables and allow both continuous and discrete 

144 variables. Previous studies showed that regression tree methods are not only more effective 

145 than simple techniques including multivariate linear regression, but also easier to understand 

146 than neural networks (e.g., Huang and Townshend 2003). 

147 Cubist constructs an unconventional type of regression tree, in which the terminal 

148 nodes or leaves are linear regression models instead of discrete values (Minasny and 

149 McBratney 2008). Cubist produces rule-based models containing one or more rules, each of 

150 which is a set of conditions associated with a multivariate linear submodel. Cubist is a 

151 powerful tool for generating rule-based predictive models. A Cubist model resembles a 

152 piecewise linear model, except that the rules can overlap with one another (RuleQuest 2008). 

153 Details on regression tree approaches and Cubist were described in Yang et al. (2003), Wylie 

154 et al. (2007), and Xiao et al. (2008). In our previous study, we used Cubist to develop a 

155 predictive NEE model and upscaled NEE estimates to the continental scale for the 

156 conterminous U.S. (Xiao et al. 2008). In this study, we used Cubist to construct a predictive 

157 GPP model based on MODIS and AmeriFlux GPP data. Cubist uses three statistical measures 

158 to evaluate the quality of the constructed predictive model, including mean absolute error 

159 (MAE), relative error (RE), and product-moment correlation coefficient (Yang et al. 2003; 

160 Xiao et al. 2008). MAE is calculated as: 
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161 
1 N 

MAE = —Y\yl-y,\ (1) 

162 where N is the number of samples used to establish the predictive model, and y. and y. are 

163 the actual and predicted values of the response variable, respectively. RE is calculated as: 

MAF 
164 RE = !^±L (2) 

MAEM 

165 where MAET is the MAE of the constructed model, and MAE^ is the MAE that would result 

166 from always predicting the mean value. All three statistical measures were used to evaluate the 

167 performance of the constructed model. 

168 2.2. Explanatory variables 

169 GPP is influenced by a variety of physical, physiological, atmospheric, hydro logical, 

170 and edaphic variables. At the leaf level, GPP is influenced by several factors, including 

171 incoming solar radiation, air temperature, vapor pressure deficit, soil moisture, and nitrogen 

172 availability (Ruimy et al. 1995; Clark et al. 1999, 2004). At the canopy or ecosystem level, 

173 GPP is also influenced by leaf area index (LAI) (Ruimy et al. 1995) and canopy phenology 

174 (Richardson et al. 2008a). At the stand or regional level, GPP is significantly affected by 

175 disturbances such as fire and harvest (Law et al. 2004). Many of these factors can be 

176 effectively assessed by satellite remote sensing. Surface reflectance depends on vegetation 

177 type, biophysical properties (e.g., biomass, leaf area, and stand age), soil background, soil 

178 moisture conditions, and sun-object-sensor geometry (Ranson et al. 1985; Penuelas et al. 1993; 

179 Schmidt and Skidmore 2003). Vegetation indices including normalized difference vegetating 

180 index (NDVI) and enhanced vegetation index (EVI) are closely correlated to the fraction of 

181 photosynthetically active radiation (fPAR; Asrar et al. 1984), and are also related to vegetation 

182 biomass and fractional vegetation cover (e.g., Tucker et al. 1985; Persson et al. 1993; Myneni 



183 et al. 2001; Chen et al. 2004). Compared to NDVI, EVI is more responsive to canopy structural 

184 variations, such as LAI, canopy type, plant physiognomy, and canopy architecture (Gao et al. 

185 2000). The normalized difference water index (NDWI; Gao 1996) was shown to be strongly 

186 correlated with leaf water content (Jackson et al. 2004) and soil moisture (Fensholt & Sandholt 

187 2003) over time. LAI and fPAR characterize vegetation canopy functioning and energy 

188 absorption capacity (Myneni et al. 2002) and are key parameters in most ecosystem 

189 productivity and biogeochemical models (Sellers et al. 1997). We therefore selected surface 

190 reflectance, EVI, LST, LAI, fPAR, and NDWI as explanatory variables. All of these variables 

191 were derived from MODIS data, which also avoided the complications and difficulties to 

192 merge disparate data sources (Xiao et al. 2008). 

193 2.3. AmeriFlux data 

194 We obtained the following three types of data: GPP from eddy covariance flux towers, 

195 explanatory variables derived from MODIS, and a land cover map. The AmeriFlux network 

196 coordinates regional analysis of observations from eddy covariance flux towers across North 

197 America, Central America, and South America (Law 2006). We obtained the Level 4 data 

198 product for 42 AmeriFlux sites over the period 2000-2006 from the AmeriFlux website 

199 (http://public.ornl.gov/ameriflux) (Table 1). This product includes NEE data from most of the 

200 active flux sites in the network. These sites are distributed across the conterminous U.S. and 

201 cover a range of vegetation types: forests, shrublands, savannas, grasslands, and croplands. 

202 Moreover, the distribution of these sites in the mean annual climate space indicates that the 

203 sites we selected are fairly representative of typical U.S. climate types (Xiao et al. 2008). In 

204 addition, some of the forested sites (e.g., Austin Cary, FL; Metolius new young pine, OR; 

205 Metolius intermediate aged ponderosa pine, OR; Wisconsin intermediate hardwood, WI) are at 
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206 different stages since stand replacing disturbance, which are located in disturbance clusters of 

207 sites. In addition, some of the sites have received treatment, including the Howland Forest 

208 West Tower (ME; nitrogen fertilizer) and the Mead cropland sites (NE; irrigation versus 

209 rainfed, continuous maize versus maize/soybean rotation). We therefore believe that these sites 

210 are fairly representative of typical U.S. ecosystem and climate types. 

211 The Level 4 product consists of two types of GPP data, including standardized 

212 (GPP_st) and original (GPP_or) GPP. GPP was calculated from NEE and ecosystem 

213 respiration (Re): 

214 GPP_st = Re - NEE_st (3) 

215 and 

216 GPP_or = Re - NEE_pr (4) 

217 where NEE_st and NEE_or are standardized and original NEE, respectively. NEE_st was 

218 calculated using the storage obtained from the discrete approach (single point on the top of the 

219 tower) with the same approach for all the sites, whereas NEE_or was calculated using the 

220 storage sent by the principal investigators that can be obtained with the discrete approach or 

221 using a vertical CO2 profile system. Both NEE_st and NEE_or were gap-filled using the 

222 Marginal Distribution Sampling (MDS) method (Reichstein et al. 2005) and the Artificial 

223 Neural Network (ANN) method (Papale and Valentini 2003). The ANN method was generally, 

224 if only slightly, superior to the MDS method (Moffat et al. 2007). A number of methods are 

225 available for estimating GPP. Although Stoy et al. (2006) showed that the non-rectangular 

226 hyperbolic method (Gilmanov et al. 2003) produce estimates more consistent with independent 

227 data, we chose to use a method that relies on gap-filled nighttime data because it is more 

228 frequently used and less computationally demanding. We used GPP calculated from NEE data 
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229 that was gap-filled using the ANN method. For each site, if the percentage of the remaining 

230 missing values for GPP_st was lower than that for GPP_or, we selected GPP_or; otherwise, we 

231 used GPP_st. GPP_st was the first choice so that the processing procedure for GPP was the 

232 same for as many sites as possible. We used 8-day average GPP data (g C m"2 day"1) to match 

233 the compositing intervals of MODIS data. 

234 2.4. MODIS data 

235 We used the following four MODIS data products (Collection 4), including surface 

236 reflectance (MOD09A1; Vermote and Vermeulen 1999), daytime and nighttime LST 

237 (MOD11A2; Wan et al. 2002), EVI (MOD13A1; Huete et al. 2002), and LAI/fPAR 

238 (MOD15A2; Myneni et al., 2002). Surface reflectance and EVI are at a spatial resolution of 

239 500m, while LST, LAI, and fPAR are at spatial resolution of 1 km. Surface reflectance, LST, 

240 LAI, and fPAR are at a temporal resolution of 8 days, while EVI is at a temporal resolution of 

241 16 days. Sims et al. (2005) showed that the midday values of gross CO2 exchange during 

242 satellite overpasses can be used to estimate 8-day mean gross CO2 exchange, bridging the 

243 connection between continuous measurements of flux tower data and 8-day MODIS data. We 

244 used the 16-day EVI product instead of EVI calculated from 8-day surface reflectance despite 

245 the lower temporal resolution of the 16-day EVI product. Each 16-day EVI composite was 

246 composited from 16 daily observations (Huete et al. 2002). The VI algorithm applies a filter to 

247 the data based on quality, cloud, and viewing geometry, and only the higher quality, cloud-

248 free, filtered data are retained for compositing; the maximum value composite (MVC) method 

249 employed selects the observation with the highest VI value to represent the composting period 

250 (16 days) (Huete et al. 2002). MVC minimizes the contamination of clouds and aerosols and 

251 the effects of sensor view angles on VI (Hoblen 1986). For the 8-day surface reflectance 
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252 product, each pixel contains the best possible daily observation during an 8-day period as 

253 selected on the basis of high observation coverage, low view angle, the absence of clouds or 

254 cloud show, and aerosol loading (Vermote and Kotchenova, 2008), and the EVI calculated 

255 from the 8-day surface reflectance is less representative of the composting period than the 

256 MODIS EVI product. 

257 For each AmeriFlux site, we obtained MODIS ASCII (American Standard Code for 

258 Information Interchange) subsets (Collection 4) consisting of 7 km x 7 km regions centered on 

259 the flux tower, including surface reflectance, daytime and nighttime LST, EVI, LAI, and fPAR 

260 over the period 2000-2006 from the Oak Ridge National Laboratory's Distributed Active 

261 Archive Center (ORNL DAAC 2006). We extracted average values for the central 3 km x 3 

262 km area within the 7 km x 7 km cutouts to better represent the flux tower footprint (Schmid 

263 2002; Rahman et al. 2005; Xiao et al. 2008). For each variable, we determined the quality of 

264 the value of each pixel within the area using the quality assurance (QA) flags included in the 

265 product. At each time step, we averaged the values of each variable using the pixels with good 

266 quality within the area to represent the values at the flux site. If none of the values within the 3 

267 x 3 km area were of good quality, we treated the period as missing. Each 16-day EVI value 

268 was used for the two 8-day intervals corresponding with the compositing interval of other 

269 MODIS data products. NDWI was calculated from band 2 and band 6 of the surface 

270 reflectance product. 

271 To estimate GPP at the continental scale, we obtained wall-to-wall MODIS data 

272 including surface reflectance, daytime and nighttime LST, LAI, and EVI over the period from 

273 February 2000 to December 2006 from the Earth Observing System (EOS) Data Gateway. For 

274 each variable, we determined the quality of the value of each pixel using the QA flags and 
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275 replaced the bad-quality value using a linear interpolation approach (Zhao et al. 2005). The 

276 NDWI was calculated from band 2 (near-infrared, 841-876 nm) and band 6 (shortwave 

277 infrared, 1628-1652 nm) of the surface reflectance product (MOD09A1). Similarly, each 16-

278 day EVI composite was used for two 8-day intervals corresponding to the compositing interval 

279 of other MODIS products. NDWI was calculated from band 2 and band 6 of the surface 

280 reflectance product for each 8-day interval. 

281 We also used the MODIS 8-day GPP product (MOD17A2; Running et al. 2004) to 

282 evaluate the performance of our model at both the site level. The MODIS GPP product is at a 

283 spatial resolution of 1 km, and a temporal resolution of 8 days. We obtained MODIS ASCII 

284 subsets (Collection 4) for the MODIS 8-day GPP product over the period 2005-2006 from the 

285 Oak Ridge National Laboratory's Distributed Active Archive Center (ORNL DAAC 2006). 

286 We also obtained the MODIS annual GPP product (MOD 17A3; Running et al. 2004) for 2005 

287 from the Numerical Terradynamic Simulation Group, University of Montana 

288 (http://www.ntsg.umt.edu) to evaluate the performance of our model at the continental scale. 

289 2.5. Land cover 

290 To construct a predictive GPP model, we obtained the land cover type for each 

291 AmeriFlux site based on the site descriptions (Table 1) and categorized each site into a class of 

292 the UMD (University of Maryland) land-cover classification system. Although the 42 

293 AmeriFlux sites used in this study cover a variety of vegetation classes of this classification 

294 system, some classes (e.g., deciduous needleleaf forests, open shrublands) were not covered by 

295 any site. We therefore reclassified all vegetation classes of the UMD classification system to 

296 seven broader classes, following Xiao et al. (2008). Specifically, evergreen needleleaf forests 

297 and evergreen broadleaf forests were merged to evergreen forests, deciduous needleleaf forests 
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298 and deciduous broadleaf forests to deciduous forests, closed shrublands and open shrublands to 

299 shrublands, and woody savannas and savannas to savannas. 

300 To estimate GPP for each 1 km x 1 km pixel across the conterminous U.S., we 

301 obtained the land-cover type for each pixel from the MODIS land-over map with the UMD 

302 classification system (Friedl et al. 2002). Similarly, we reclassified the vegetation classes of the 

303 MODIS land-cover map to the seven broader classes. We then used the reclassified land cover 

304 map to specify the land cover of each 1 km x 1 km cell across the conterminous U.S. 

305 2.6. Model development 

306 We developed a predictive GPP model using Cubist based on the site-specific MODIS 

307 and AmeriFlux GPP data. Our explanatory variables included land cover, surface reflectance 

308 (bands 1-7), daytime and nighttime LST, EVI, NDWI, fPAR, and LAI, and our response 

309 variable was GPP (g C m"2 day"1). Land cover was included as a categorical variable in the 

310 model. We split the site-level data set of AmeriFlux and MODIS data into a training set (2000-

311 2004) and a test set (2005-2006). If a site only had GPP observations for the period 2000-2004, 

312 the site was only included in the training set; if a site only had GPP observations for the period 

313 2005-2006, the site was only included in the test set; otherwise, the site was included in both 

314 training and test sets. The training and test sets included 40 and 34 AmeriFlux sites, 

315 respectively. We had a total of 4529 and 2240 data samples for the training and test sets, 

316 respectively. In addition to the full model that includes all of the 14 independent variables, we 

317 also developed a series of models by dropping one or more variables at a time using Cubist. To 

318 select the best model, we evaluated the performance of each model based on MAE, RE, and 

319 correlation coefficient. We chose the model with the minimal MAE and RE and maximum 

320 correlation coefficient as the best model. We also evaluated the model performance using the 
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321 Root Mean Squared Error (RMSE), scatterplots of predicted GPP versus observed GPP, and 

322 seasonal variations between the predicted and observed GPP. 

323 We also evaluated the performance of our model in the spatial domain using leave-one-

324 out cross-validation. In this approach, the data from a single site was used for validation, and 

325 the data from the remaining sites were used for training. The training and validation data were 

326 from different sites and were therefore independent from each other as these sites are generally 

327 hundreds of kilometers away from each other and the spatial autocorrelation between these 

328 sites was negligible. The leave-one-out cross-validation was conducted for each site, 

329 separately. 

330 2.7. Continental-scale estimation of GPP 

331 As mentioned earlier, the AmeriFlux sites used in this study are fairly representative of 

332 typical U.S. ecosystem and climate types. We believe that the predictive GPP model 

333 constructed from the 42 sites can be extrapolated to the conterminous U.S. We used the model 

334 to estimate GPP for each 1 km x 1 km cell across the conterminous U.S. for each 8-day 

335 interval over the period 2000-2006 using wall-to-wall MODIS data. GPP was not estimated for 

336 non-vegetated cells (e.g., urban, barren), and water bodies. We compared our estimate with the 

337 MODIS GPP product (MOD17A3; Running et al. 2004). With our 8-day GPP estimates, we 

338 examined the patterns, magnitude, and interannual variability of GPP. 

339 3. Results and Discussion 

340 3.1. Model development 

341 3.1.1 Predictive GPP model 

342 We chose the model containing five explanatory variables - land cover, EVI, daytime 

343 LST, LAI, and NDWI as the best model to predict GPP at the continental scale (RE = 0.38, 
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344 MAE = 1.22 g C m"2 day"1, R2 = 0.74). The performance of the model was comparable to that 

345 of the full model (RE = 0.37, MAE = 1.19 g C m"2 day"1, R2 = 0.74). Having only five 

346 explanatory variables could substantially reduce the computational complexity for continental-

347 scale predictions compared to the full model. The model consisted of five committee models, 

348 each of which was made of a number of rule-based submodels. For instance, the first 

349 committee model was made of the following 23 rule-based submodels: 

350 Rule 1: if land cover in {Deciduous forests, Mixed forests}, EVI <= 0.37, and LAI <= 

351 2.64, then 

352 GPP = 0.28 + 0.012 LSTday 

353 Rule 2: if LSTday <= 3.27, EVI > 0.22, then 

354 GPP = -0.64 + 4.8EVI + 0.6NDWI + 0.06LAI 

355 Rule 3: if land cover in {Evergreen forests, Shrublands, Savannas, Grasslands, 

356 Croplands}, EVI <= 0.22, LAI <= 2.64, then 

357 GPP = 0.15 + 1.4EVI + 0.01 LSTday 

358 Rule 4: if land cover in {Deciduous forests, Mixed forests, Savannas, Croplands}, 

359 LSTday > 3.26, EVI <= 0.37, LAI <= 1.78, then 

360 GPP = -1.10 + 0.75LAI + 4.6EVI 

361 

362 Rule 22: if NDWI <= -0.28, LSTday > 17.65, EVI > 0.58, then 

363 GPP = 10.49 + 1.9EVI + 0.02LSTday - 0.7NDWI 

364 Rule 23: if land cover = Croplands, LSTday > 29.92, EVI > 0.37, then 

365 GPP = -24.85 + 5.47LAI + 58.9EVI + 0.124LSTday- 0.5NDWI 
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366 where LSTday is the daytime LST. As mentioned earlier, the rules of the model could overlap 

367 with one another. For instance, rule 1 overlapped with rule 4 as land cover could be deciduous 

368 forests in both cases; rules 22 and 23 overlapped with each other as EVI could be greater than 

369 0.58 in both cases. 

370 3.1.2. Model evaluation 

371 The analysis of model residuals indicated that the residuals were not randomly 

372 distributed. Low GPP values were generally associated with low prediction errors, whereas 

373 high GPP values were associated with high prediction errors. The uncertainties of carbon flux 

374 measurements are directly proportional to the magnitudes of the fluxes (Richardson et al. 

375 2008b). The residuals also exhibited a systematic component. For example, large GPP tended 

376 to have consistently negative residuals. The residuals also had a random component that arose 

377 partially from errors/uncertainties in the measured fluxes as well as MODIS data. Random 

378 errors in AmeriFlux GPP data are significant (Hagen et al. 2006) and these errors may 

379 ultimately limit the agreement between observed and predicted GPP values. In addition, the 

380 explanatory variables included in the model could not completely explain the variance of GPP. 

381 For example, the independent variables used in the model could not account for nitrogen 

382 availability, and may affect the accuracy of the model. 

383 We compared our GPP estimates with observed GPP for each AmeriFlux site over the 

384 period 2005-2006 (Fig. 2). Our estimates captured most features of observed GPP including 

385 seasonality and year-to-year variations over the period 2005-2006. GPP was under- and over-

386 predicted for some sites. The model could not capture exceptionally high GPP values for some 

387 sites, such as Audubon Research Ranch (AZ), Santa Rita Mesquite (AZ), and Fort Peck (MT). 

388 We averaged observed and predicted 8-day GPP for each site, and plotted mean predicted GPP 
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389 against observed GPP (Fig. 3). The model estimated GPP fairly well at the site level (y = 0.95x 

390 + 0.21, R2 = 0.84, p < 0.0001; RMSE = 0.77 g C m"2 day1). Overall, the model slightly under-

391 and overestimated GPP for values greater or lower than ~4 g C m"2 day"1, respectively. The 

392 model performance also varied with site. Large underestimation occurred at some sites such as 

393 the North Carolina Loblolly Pine (NCP, NC), Freeman Ranch Mesquite Juniper (FRM, TX), 

394 and Walnut Gulch Kendall Grasslands (WGK, AZ), whereas large overestimation occurred at 

395 some sites such as Lost Creek (LC, WI) and Mead Rainfed (MR, NE). The model predicted 

396 GPP remarkably well at the biome level (y = 0.99x - 0.13, R2 = 0.91, p < 0.00001; RMSE = 

397 0.42 g C m"2 day"1). The model slightly overestimated GPP for deciduous forests and croplands 

398 and slightly underestimated GPP for all other biomes. 

399 The disagreement between predicted and observed GPP values is likely due to the 

400 following reasons. First, the MODIS and tower footprints do not match with each other and the 

401 vegetation structure at the flux tower could be significantly different from that within the 

402 MODIS footprint (Xiao et al. 2008). For example, the Tonzi Ranch site (CA) is dominated by 

403 deciduous blue oaks (Quercus douglasii) and the understory and open grassland are mainly 

404 cool-season C3 annual species (Ma et al. 2007). The MODIS footprint consists of a larger 

405 fraction of grassland than the tower footprint. Blue oaks and grasses have distinct phenologies 

406 (Ma et al. 2007) and therefore had differential contributions to the carbon fluxes integrated 

407 over the MODIS footprint over time (Xiao et al. 2008). Second, MODIS data is less sensitive 

408 to changes in understory vegetation and damage to canopies that do not increase canopy gaps, 

409 leading to overestimation of carbon assimilation rates. Third, the independent variables 

410 included in the model could not account for other factors such as nitrogen availability (Clark et 

411 al. 1999, 2004) and stand age (Ryan et al. 2004), all of which may influence GPP. Finally, we 
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412 estimated GPP for each 8-day interval, and therefore our estimates may not capture the 

413 variability of GPP within that period. The 8- or 16-day LST and EVI values do not always 

414 represent average environmental conditions and average fluxes over the 8- or 16-day period 

415 (Xiao et al. 2008), and the exclusion of days with high and low values could lead to 

416 underestimation and overestimation of GPP values, respectively. In addition, during drought or 

417 days with high vapor pressure deficits, the midday GPP may not be representative because of 

418 the skewed diurnal variation in GPP (Anthoni et al. 1999). 

419 3.1.3. Model validation 

420 We validated our model in both temporal and spatial domains. We first validated the 

421 model in the temporal domain using the test set over the period 2005-2006 (Fig. la). Our 

422 model estimated GPP fairly well (R2 = 0.74, p < 0.0001; RMSE = 1.99 g C m"2 day"1), although 

423 it slightly under- and overestimated GPP values greater and less than 3 g C m" day"1, 

424 respectively. By contrast, the MODIS GPP product estimated GPP for the AmeriFlux sites 

425 with a RMSE of 2.43 g C m"2 day"1 (y = 0.50x + 1.01, R2 = 0.58, p < 0.0001; Fig. lb). The R2 

426 and RMSE of our model were 28% higher and 18% lower than those of the MODIS GPP 

427 product, respectively. 

428 We then validated the model in the spatial domain using leave-one-out cross validation. 

429 The cross-validation also showed that our model estimated GPP fairly well (Fig. 4). The model 

430 performance varied with site and biome type. Our model had a higher performance for forest 

431 ecosystems and croplands than shrublands, savannas, and grasslands. We averaged observed 

432 and predicted 8-day GPP for each site, and then plotted mean predicted GPP against observed 

433 GPP (Fig. 5). The cross-validation showed that our model estimated GPP fairly well at the site 

434 level (y = 0.73x + 1.07, R2 = 0.69, p < 0.0001; RMSE = 1.19 g C m"2 day"1) although the slope 
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435 and R2 were lower and the RMSE was higher than those of the validation in the temporal 

436 domain, respectively. The cross-validation also showed that our model estimated GPP 

437 remarkably well at the biome level (y = 0.86x + 0.48, R2 = 0.91, p < 0.0001; RMSE = 0.33 g C 

438 m"2 day"1). 

439 The validation of the model in both temporal and spatial domains showed that the 

440 performance of our model is encouraging, given the diversity in ecosystem types, age 

441 structures, fire and insect disturbances, and management practices. Our approach extensively 

442 used eddy covariance flux tower data involving typical U.S. ecosystem and climate types. Our 

443 study demonstrated that our empirical approach has great potential for upscaling flux tower 

444 GPP data to continental scales across a variety of biomes. 

445 3.2. Gross Primary Production 

446 3.2.1. Seasonal patterns 

447 Our 8-day GPP estimates were highly constrained by eddy flux data, and provided a 

448 spatially and temporally continuous measure of GPP with high spatial and temporal resolution 

449 for the conterminous U.S., which made it possible to examine the patterns, magnitude, and 

450 interannual variability of GPP across the U.S. Our estimates showed that GPP exhibited large 

451 spatial variability and strong seasonal fluctuations (Fig. 6). The seasonal patterns of GPP and 

452 its spatial variability reflected the controlling effects of climate conditions. In the spring 

453 months, the Southeast and the Gulf Coast significantly assimilated carbon with GPP values 

454 reaching -100-250 g C m"2 mo"1 as the growing season started in early to mid-spring in these 

455 regions. The Pacific Coast is dominated by evergreen forests, and these ecosystems also 

456 assimilated carbon due to mild temperatures and moist conditions during the spring (Anthoni et 

457 al. 2002). The Mediterranean regions in California also assimilated carbon in the spring 
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458 because of a surplus of precipitation and relatively warm temperatures (Xu & Baldocchi 2004; 

459 Ma et al. 2007). By contrast, the Upper Great Lakes region and the northern Great Plains are 

460 dominated by croplands with most crops planted between April and June (Shroyer et al. 1996), 

461 whereas the New England region and the northern portion of the Upper Great Lakes region are 

462 dominated by temperate-boreal transitional forests. The relatively late greenup in these regions 

463 led to low GPP. 

464 In the summer months, the eastern U.S., the Coastal Pacific Northwest, and some 

465 regions in California exhibited high GPP values (-250-450 g C m"2 mo"1) owing to favorable 

466 temperature and soil moisture conditions, while the vast majority of western landscapes, 

467 including the Great Basin, the Colorado Plateau, and the western Great Plains exhibited much 

468 lower GPP values due to spare vegetation and precipitation deficits. 

469 In the fall months (September-November), the GPP values of the Southeast and the 

470 Gulf Coast substantially decreased relative to those in the summer because vegetation began to 

471 senesce and days became shorter in these regions. The spatial patterns and magnitude of GPP 

472 were similar to those of the spring. The Upper Great Lakes region and the Great Plains had 

473 very low GPP values due to the harvesting of crops. 

474 In the winter months (December-February), the majority of the U.S. had little or no 

475 photosynthesis as the canopies of most ecosystems were dormant. Some regions in the Pacific 

476 Coast, California, the Gulf Coast, and the Southeast slightly assimilated carbon, because of the 

477 dominance of evergreen forests and mild temperatures (Waring & Franklin 1979; Clark et al. 

478 1999; Anthoni et al. 2002; McGarvey et al. 2004). For example, Douglas-fir, a major species in 

479 the Pacific Northwest and CaUfornia, is known to be highly plastic and able to photosynthesize 

480 in winter when temperatures are above the freezing point (Xiao et al. 2008). 
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481 Fig. 7 showed the trajectories of the spatially averaged and integrated 8-day GPP for 

482 each biome from February 2000 to December 2006. Deciduous forests and croplands had the 

483 largest intra-annual variability in spatial averaged GPP, followed by mixed forests; evergreen 

484 forests and savannas had intermediate intra-annual variability; grasslands and shrublands had 

485 the least variability (Fig. 7a). The temporal variability of spatially integrated GPP (or spatial 

486 total) also showed clear dependence on biome (Fig. 7). Collectively, the terrestrial ecosystems 

487 substantially assimilated carbon and had a peak spatial total of 50-55 Tg C day"1. Taken 

488 separately, croplands had the highest intra-annual variability in spatially integrated GPP, with a 

489 peak spatial total of 25-30 Tg C day"1, followed by deciduous forests; evergreen forests, mixed 

490 forests, savannas, and grasslands had intermediate intra-annual variability in spatially 

491 integrated GPP; shrublands had the least variability. Both spatially averaged and integrated 

492 GPP showed interannual variability for each biome. 

493 3.2.2. Annual fluxes 

494 We calculated annual GPP for each year over the period 2001-2006 from our 8-day 

495 GPP estimates, and then calculated the average annual GPP over the 6-year period (Fig. 8). 

496 Annual GPP varied considerably over space, and exhibited a large spatial gradient from the 

497 east to the west. The Gulf Coast, the Southeast, the coastal Pacific Northwest, and a part of the 

498 Pacific Southwest had high annual GPP (-1500-2000 g C m"2 yr"1); the Midwest and the 

499 Northeast had intermediate values (-1200-1500 g C m"2 yr"1), and the majority of the western 

500 half of the country including the Southwest, the western Great Plains, and the Rocky Mountain 

501 region had GPP values generally lower than 500 g C m"2 yr"1. 

502 We estimated a total gross carbon uptake of 7.06 Pg C yr"1 for the conterminous U.S. 

503 over the period 2001-2006. A quantitative breakdown of the 6-yr average annual GPP map by 
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504 regions (Table 2) showed that the North Central and South Central regions had the highest 

505 GPP, followed by the Southeast, the Rocky Mountain region, and the Northeast; the Pacific 

506 Northwest and the Pacific Southwest had the lowest GPP. The spatially averaged annual GPP 

507 of the U.S. was -1100 g C m"2 yr"1 (Table 2). Regionally, the Southeast had the highest 

508 spatially averaged annual GPP, followed by the Northeast and the South Central regions; the 

509 North Central region, the Pacific Northwest, and the Pacific Southwest had intermediate 

510 values; the Rocky Mountain region had the lowest spatially averaged annual GPP. 

511 A quantitative breakdown of the 6-yr average annual GPP by biomes (Table 3) showed 

512 spatially integrated annual GPP varied with biome. Croplands had the highest spatially 

513 integrated annual GPP; shrublands had lowest annual GPP; other biomes including evergreen 

514 forests, deciduous forests, mixed forests, savannas, and grasslands had intermediate annual 

515 GPP. Spatially averaged annual GPP also varied with biome (Table 3). Deciduous forests had 

516 the highest spatially averaged annual GPP, followed by evergreen forests, mixed forests, 

517 croplands, and savannas; grasslands had intermediate values; shrublands had the lowest values. 

518 We compared our annual GPP estimate with annual GPP estimate from the MODIS 

519 GPP product (MOD 17A3; Running et al. 2004) for 2005 (Fig. 9). Both estimates showed a 

520 large spatial gradient from the east to the west: the Southeast had the highest annual GPP; the 

521 Midwest had intermediate annual GPP, while the Rocky Mountain region had the lowest GPP. 

522 Both estimates showed that annual GPP is -300 g C m"2 yr"1 in the Rocky Mountain region. 

523 Annual GPP is also very similar in the New England region and the Upper Peninsula of 

524 Michigan. However, large discrepancies were observed between our estimate and the MODIS 

525 GPP product. Our estimate exhibited larger spatial variability than the estimate from the 

526 MODIS GPP product. Moreover, compared to our estimate, the MODIS GPP product 
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527 substantially underestimated GPP in some regions, particularly the Midwest and the coastal 

528 Pacific Northwest where ecosystems are highly productive. For example, our annual GPP for 

529 the croplands in the Midwest is -1200-1500 g C m"2 yr"1, while the MODIS annual GPP is only 

530 -700 g C m"2 yr"1. In many areas in the Southeast, our annual GPP estimate is -1500-2000 g C 

531 m"2 yr"1, while the MODIS annual GPP is only -1000-1500 g C m"2 yr"1. 

532 The large discrepancies in annual GPP between our estimate and the MODIS GPP 

533 product can be attributed to the following reasons. First, the MODIS GPP product was 

534 developed using an algorithm optimized for global applications and meteorological fields with 

535 coarse resolution (1 by 1.25 degree) and large uncertainties (Zhao et al. 2006), and thereby 

536 likely contributed to the smaller spatial variability of MODIS GPP and affected the accuracy of 

537 the MODIS GPP estimates. Second, the maximum light use efficiency (emax) is an essential 

538 parameter of the LUE model used to develop the MODIS GPP product. The e^x is only 0.68 g 

539 C MJ"1 for croplands in the MOD 17 algorithm (Heinsch et al. 2003), which is likely too low 

540 for croplands and results in substantial underestimation of cropland GPP. Zhang et al. (2008) 

541 showed that MODIS annual GPP for an irrigated cropland in China was only about 20-30% of 

542 annual GPP derived from eddy covariance flux measurements, and attributed the substantial 

543 underestimation of cropland GPP to the underestimation of emax in the MOD 17 algorithm. 

544 Third, our estimate was highly constrained eddy flux data, while some geographical regions 

545 and biomes are underrepresented by the AmeriFlux network, which could affect the accuracy 

546 of our estimates. For example, we merged savannas (tree cover 10-30%) and woody savannas 

547 (tree cover 30-60%) together in the development of the model because no sites representing 

548 typical savannas with tree cover below 30% were available in the model, which could lead to 

549 overestimation of GPP for areas that were classified as savannas (tree cover 10-30%). 
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550 Global annual GPP has been estimated to be 120 Pg C yr"1 using 180 measurements of 

551 atmospheric C02 (Ciais et al. 1997) and 110 Pg C yr"1 from 2001 to 2003 using the MODIS 

552 GPP product (Zhao et al. 2005). Our estimates suggested that the terrestrial ecosystems in the 

553 conterminous U.S. accounted for 5.9-6.5% of the global annual GPP, while its land area 

554 accounts for ~5.4% of the global land area. Our estimate of U.S. annual GPP was higher than 

555 other estimates. For example, the average annual GPP over the period 2001-2006 derived from 

556 MODIS GPP product (Running et al. 2004) was -6.2 Pg C yr"1. Our estimate was about 14% 

557 higher than the MODIS GPP estimate. Potter et al. (2007) estimated annual NPP between 2.67 

558 and 2.79 Pg C yr"1 over the period 2001-2004 using MODIS data and the NASA-CASA model. 

559 Our estimate was also higher than that estimated by Potter et al. (2007) assuming that NPP is 

560 about half of GPP (Lloyd & Farquhar 1996; Waring et al. 1998). 

561 Our predictive model has advantages over empirical or process-based ecosystem 

562 models. Most ecosystem models are dependent on site-level parameterizations that are used as 

563 default parameters for a much broader spectrum of vegetation types and conditions, which may 

564 limit the accuracy of model simulations over large areas (e.g., Prince and Goward 1995; 

565 Running et al. 2004; Xiao et al. 2009). By contrast, our model was highly constrained by eddy 

566 flux data from a number of towers encompassing a range of ecosystem and climate types, and 

567 may lead to model parameters that are more representative of the full spectrum of vegetation 

568 and climate types and thereby more accurate estimates of carbon fluxes at regional scales. 

569 Moreover, our model consisted of rule-based, multivariate linear regression models, and is 

570 easier to understand and implement. Our model could substantially reduce computational 

571 complexity compared to many ecosystem models. On the other hand, however, our model also 

572 has disadvantages over empirical or process-based ecosystem models. Our model is an 
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573 empirical approach, and does not involve ecosystem processes such as photosynthesis and 

574 nitrogen cycling. Moreover, our model did not explicitly consider some factors influencing 

575 GPP such as nitrogen availability, stand age, and disturbance history that may be explicitly 

576 simulated in process-based ecosystem models (e.g., Aber et al. 1997). All these model 

577 differences contributed to the discrepancies in annual GPP estimates between our empirical 

578 approach and ecosystem models. 

579 3.2.3. Interannual variability 

580 The U.S. annual GPP varied between 6.91 and 7.33 Pg C yr"1 over the period 2001-

581 2006. The years 2002, 2004, and 2006 had lower GPP values relative to 2001, 2003, and 2005. 

582 Annual GPP exhibited positive and negative anomalies for each year, and the spatial patterns 

583 of these anomalies also varied from year to year (Fig. 10). The annual GPP anomalies were 

584 likely due to climate variability, disturbances, and management practices. Most notably, large 

585 negative GPP anomalies occurred in the Great Plains in 2002 and 2006. Moderate to severe 

586 drought affected over 50% of the country in both years, including the Southwest, the Great 

587 Plains, the Gulf Coast, and the coastal Southeast, particularly Texas and Oklahoma (U.S. 

588 Drought Monitor, http://www.drought.unl.edu). The annual precipitation of these two years 

589 was 467 and 458 mm for the U.S., respectively - lower than the 30-year mean annual 

590 precipitation (480 mm) taken over the PRISM climate database. Our GPP anomaly maps 

591 showed large negative GPP anomalies in many of the drought-affected regions. Notably, large 

592 negative GPP anomalies occurred in the Great Plains in 2002 and 2006. Our results further 

593 demonstrated severe drought could substantially affect ecosystem carbon fluxes (Xiao et al. 

594 2009). 
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595 At landscape to regional scales, annual GPP also exhibited large anomalies. For 

596 example, our results showed large negative GPP anomalies in the region experienced the 

597 Biscuit fire in Oregon (Fig. 11). The 2002 Biscuit Fire was among the largest forest fires in 

598 modern U.S. history, encompassing > 2000 km2 primarily within the Rogue-Siskiyou National 

599 Forest (RSNF) in southwest Oregon (Campbell et al., 2007; Thompson et al. 2007). Large fires 

600 such as the Biscuit Fire damaged both overstory and/or understory vegetation, leading to a 

601 reduction in GPP and large negative GPP anomalies in the region in 2003, which may result in 

602 net carbon release into the atmosphere. Numerous wildfires occurred over the western half of 

603 the country due to dry weather and high winds, burning 1.5-4.0 x 104 km2 of forests from 2000 

604 to 2006 (U.S. Fire Administration, http://www.usfa.dhs.gov). The drought along with wildfires 

605 likely led to the negative GPP anomalies in the western half of the U.S. 

606 Our results also showed hurricanes could reduce GPP and lead to large negative GPP 

607 anomalies (Fig. 12). For example, Hurricane Katrina occurred in late August 2005 affected 

608 over 2 x 104 km2 of forest across Mississippi, Louisiana and Alabama, with damage ranging 

609 from downed trees, snapped trunks and broken limbs to stripped leaves (USDA Forest Service, 

610 http://www.srs.fs.usda.gov). Forest inventories indicated that the potential timber losses from 

611 Hurricane Katrina amounted to roughly 1.2 x 108 m3 (USDA Forest Service, 

612 http://www.srs.fs.usda.gov). Our results showed large negative GPP anomalies in 2006 in the 

613 Gulf Coast region severely affected by Hurricane Katrina (Fig. 12). The reduction in GPP and 

614 increased Re resulting from increased litter could lead to substantial carbon release into the 

615 atmosphere (Chambers et al. 2007). 

616 4. Conclusions 
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617 We used a regression tree approach and remotely-sensed data from MODIS to upscale 

618 AmeriFlux GPP data to the continental scale and to produce a GPP dataset with 8-day temporal 

619 resolution and 1 km spatial resolution for the conterminous U.S. over the period 2000-2006. 

620 Our results demonstrated that our empirical approach has great potential for upscale eddy flux 

621 GPP data to large areas across multiple biomes. Our GPP estimates provided a spatially and 

622 temporally continuous measure of gross primary production for the conterminous U.S. Our 

623 estimates also provided an alternative, independent dataset from the MODIS GPP product and 

624 simulations with biogeochemical models. Our GPP estimates were highly constrained by flux 

625 tower data from towers encompassing a large range of ecosystem and climate types as well as 

626 disturbance history. Our approach can be applied to the entire North America, other geographic 

627 regions including Europe, Southeast Asia, and South America, or to the global scale, and to 

628 produce continuous GPP estimates over continents or the globe. This approach can also be 

629 used to upscale other fluxes including evapotranspiration to large areas. 

630 Our GPP estimates exhibited large spatial variability and strong seasonal variations, 

631 which reflected the controlling effects of climate conditions and vegetation distributions. We 

632 estimated a total gross carbon uptake of 7.06 Pg C yr"1 for the conterminous U.S. over the 

633 period 2001-2006. Annual GPP varied substantially with geographical region and bio me type. 

634 Our annual GPP estimate exhibited large spatial variability than the MODIS GPP product 

635 (MOD17A3; Running et al. 2004). Our results also showed that the U.S. annual GPP varied 

636 between 6.91 and 7.33 Pg C yr"1 over the 6-year period. Extreme climate events (e.g., drought) 

637 and disturbances (e.g., fires and hurricanes) reduced annual GPP at regional scales and could 

638 have a significant impact on the U.S. net ecosystem carbon exchange. The interannual 
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639 variability of GPP was mainly caused by these extreme climate events (e.g., drought) and 

640 disturbances (e.g., fire, hurricane). 
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Table 1. Site descriptions including name, latitude, longitude, vegetation type, years of data 

available, and references for each flux site. 

Site 
Audubon Research 
Ranch (ARR) 
Santa Rita Mesquite 
(SRM) 
Walnut Gulch 
Kendall Grasslands 
(WGK) 
Sky Oaks Old Stand 
(SOO) 
Sky Oaks Young 
stand (SOY) 
Tonzi Ranch (TR) 
Vaira Ranch (VR) 

Niwot Ridge Forest 
(NRF) 
Kennedy Space 
Center -Scrub Oak 
(KSC) 
Austin Cary - Slash 
Pine (AC) 
Bondville (Bon) 

FNAL agricultural 
site (FAg) 
FNAL Prairie site 
(FPr) 
Morgan Monroe 
State Forest (MMS) 
Harvard Forest EMS 
Tower (HFE) 
Harvard Forest 
Hemlock Site (HFH) 
Little Prospect Hill 
(LPH) 
Howland forest (HF) 

Howland forest (west 
tower) (HFW) 
Sylvania Wilderness 
Area (SWA) 
Univ. of Mich. 
Biological Station 
(UMB) 
Missouri Ozark (MO) 

Goodwin Creek (GC) 
Fort Peck (FPe) 
Duke Forest loblolly 
pine (DFP) 

State 
AZ 

AZ 

AZ 

CA 

CA 

CA 
CA 

CO 

FL 

FL 

IL 

IL 

IL 

IN 

MA 

MA 

MA 

ME 

ME 

MI 

MI 

MO 

MS 
MT 
NC 

Lat 
31.59 

31.82 

31.74 

33.37 

33.38 

38.43 
38.41 

40.03 

28.61 

29.74 

40.01 

41.86 

41.84 

39.32 

42.54 

42.54 

42.54 

45.20 

45.21 

46.24 

45.56 

38.74 

34.25 
48.31 
35.98 

Lon 
-110.51 

-110.87 

-109.94 

-116.62 

-116.62 

-120.97 
-120.95 

-105.55 

-80.67 

-82.22 

-88.29 

-88.22 

-88.24 

-86.41 

-72.17 

-72.18 

-72.18 

-68.74 

-68.75 

-89.35 

-84.71 

-92.20 

-89.97 
-105.10 
-79.09 

Vegetation type 
Grasslands 

Savannas 

Grasslands 

Shrublands 

Shrublands 

Savannas 
Grasslands 

Evergreen forests 

Shrublands 

Evergreen forests 

Croplands 

Croplands 

Grasslands 

Deciduous forests 

Deciduous forests 

Evergreen forests 

Deciduous forests 

Evergreen forests 

Deciduous forests 

Mixed forests 

Mixed forests 

Deciduous forests 

Grasslands 
Grasslands 
Evergreen forests 

Year 
2002-2006 

2004-2006 

2004-2006 

2004-2006 

2001-2006 

2001-2006 
2001-2006 

2000-2003 

2000-2006 

2001-2005 

2001-2006 

2005-2006 

2004-2006 

2000-2005 

2000-2004 

2004 

2002-2005 

2000-2004 

2000-2004 

2002-2006 

2000-2003 

2004-2006 

2002-2006 
2000-2006 
2001-2005 

References 

Watts et al. 2007 

Lipson et al. 2005 

Lipson et al. 2005 

Ma et al. 2007 
Xu and Baldocchi 
2004 
Monson et al. 2002 

Dore et al. 2003 

Powell et al. 2008 

Hollinger et al. 
2005 

Schmid et al. 2000 

Urbanski et al. 
2007 

Hollinger et al., 
1999, 2004 
Hollinger et al., 
1999, 2004 
Desai et al., 2005 

Gough et al., 2008 

Gu et al. 2006, 
2007 

Oren et al. 1998, 
2006 



Duke Forest 
hardwoods (DFH) 
North Carolina 
loblolly pine (NCP) 
Mead irrigated 
continuous maize site 
(MIC) 
Mead irrigated 
rotation (MIR) 
Mead rainfed (MR) 
Bartlett Experimental 
Forest (BEF) 
Toledo Oak 
Openings (TOO) 
ARM Oklahoma 
(ARM) 
Metolius intermediate 
aged ponderosa pine 
(MI) 
Metolius new young 
pine (MN) 
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NC 35.97 -79.10 Deciduous forests 2003-2005 Pataki and Oren, 
2003 

NC 35.80 -76.67 Evergreen forests 2005-2006 Noormets et al. 
submitted 

NE 41.17 -96.48 Croplands 2001-2005 Verma et al. 2005 
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984 Table 2. Spatially averaged (spatial mean) and integrated (spatial total) annual GPP over the 

985 period 2001-2006 for each region: Northeast (NE), North Central (NC), Southeast (SE), South 

986 Central (SC), Rocky Mountain (RM), Pacific Northwest (PNW), and Pacific Southwest 

987 (PSW). 

GPP NE NC SE SC RM PNW PSW US 

Spatial Mean 1604.20 1212.55 2033.91 1457.97 438.20 1007.35 927.77 1103.92 

(gCrnV1) 

Spatial Total 0.67 2.00 1.00 1.93 0.81 0.36 0.29 7.06 

(PgCyr-1) 

988 

989 

990 

991 

992 

993 

994 

995 

996 

997 

998 

999 
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1000 Table 3. Spatially averaged (spatial mean) and integrated (spatial total) annual GPP over the 

1001 period 2001-2006 for each vegetation type: evergreen forests (EF), deciduous forests (DF), 

1002 mixed forests (MF), shrublands (Sh), savannas (Sa), grasslands (Gr), and croplands (Cr). 

GPP EF DF MF Sh Sa Gr Cr AU 

Spatial Mean 1431.26 1774.74 1447.31 303.78 1500.96 589.24 1500.38 1103.92 

(gCrnV1) 

Spatial Total 0.85 0.83 0.67 0.33 0.63 0.83 2.92 7.06 

(PgCyr'1) 
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Figure captions: 

Fig. 1. Scatterplots of observed 8-day GPP versus predicted 8-day GPP. (a) Our estimate (y = 

0.85x + 0.37, R2 = 0.74, p < 0.0001). (b) MODIS GPP product (Running et al. 2004) (y = 

0.50x + 1.01, R2 = 0.5%, p < 0.0001). For each plot, the solid line is the 1:1 line, and the dashed 

line is the regression line. 

Fig. 2. Examples of time series plots of observed (open circles) and predicted (solid circles) 8-

day GPP (g C m"2 day"1) for each AmeriFlux site over the period 2005-2006: (1) evergreen 

forests - AC (FL) and MRP (WI); (2) deciduous forests - DFH (NC); (3) mixed forests - SWA 

(MI); (4) shrublands - KSC (FL); (5) savannas - SRM (AZ), TR (CA), and VR (CA); (6) 

grasslands - ARR (AZ); (7) croplands - MIC (NE). For x-axis, the starting dates (month/day) 

of every two 8-day intervals are provided in parentheses under interval numbers. Dashed lines 

are used to separate 2005 from 2006. Site abbreviations are used here, and their full names are 

given in Table 1. 

Fig. 3. Scatterplot of observed mean 8-day GPP versus predicted mean 8-day GPP across the 

AmeriFlux sites. Error bars are standard errors (defined as the standard deviation divided by 

the square root of the number of observations) of the observed and predicted 8-day mean GPP. 

The solid line indicates the 1:1 line, and the dashed line indicates the regression line (y = 0.95 

* x + 0.21, R2 = 0.84, p < 0.0001). Site abbreviations are used here, and their full names are 

given in Table 1. 

Fig. 4. Examples of leave-one-out cross-validation scatterplots with observed 8-day GPP 

versus predicted 8-day GPP: (1) evergreen forests - HF (y = 0.85x+1.00, R2 = 0.91, p < 

0.0001) and NRF (y = 0.67x + 0.63, R2= 0.63, p < 0.0001); (2) deciduous forests - HFE (y = 

0.97x + 0.24, R2= 0.87, p < 0.0001) and WC (y = 0.73x + 0.62, R2= 0.86, p < 0.0001); (3) 
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mixed forests - SWA (y = 0.89x + 0.03, R2= 0.89, p < 0.0001) and UMB (y = 0.92x + 0.66, 

R2= 0.93, p < 0.0001); (4) shrublands - KSC (y = 0.28x + 2.35, R2= 0.14, p < 0.0001); (5) 

savannas - FRM (y = 0.83x + 1.94, R2= 0.49, p < 0.001); (6) grasslands - GC (y = 0.76x + 

2.03, R2 = 0.55, p < 0.0001); (7) croplands - MR (y = 1.04x + 0.81, R2 = 0.86, p < 0.0001). 

The solid line indicates the 1:1 line, and the dashed line indicates the regression line. Site 

abbreviations are used here, and their full names are given in Table 1. 

Fig. 5. Leave-one-out cross-validation scatterplot of observed mean 8-day GPP versus 

predicted mean 8-day GPP across the AmeriFlux sites. Error bars are standard errors of the 

observed and predicted 8-day GPP. The solid line indicates the 1:1 line, and the dashed line 

indicates the regression line (y = 0.73 * x + 1.07, R2 = 0.69, p < 0.0001). Site abbreviations are 

used here, and their full names are given in Table 1. 

Fig. 6. Monthly GPP (g C m"2 mo'l) for the conterminous U.S. from January through 

December in 2005. 

Fig. 7. Spatially averaged and integrated 8-day GPP for each biome across the conterminous 

U.S. over the period 2001-2006. (a) Spatially averaged 8-day GPP (g C m"2 day"1), (b) Spatially 

integrated 8-day GPP (Tg C day"1). 

Fig. 8. Average annual GPP (g C m"2 yr"1) of the conterminous U.S. over the period 2001-2006. 

The gray hnes indicate state boundaries. The black Unes indicate boundaries of geographical 

regions: Northeast (NE), Southeast (SE), North Central (NC), South Central (SC), Rocky 

Mountain (RM), Pacific Northwest (PNW), and Pacific Southwest (PSW). 

Fig. 9. Annual GPP (g C m"2 yr"1) for the conterminous U.S. for 2005. (a) Our estimate, (b) The 

MODIS GPP product (MOD17A3; Running et al. 2004). 
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Fig. 10. Annual GPP anomalies (g C m"2 yr"1) and annual precipitation anomalies (mm) for the 

conterminous U.S. for 2002 and 2006. The anomalies of annual GPP were relative to the 6-

year period from 2001 to 2006, and the anomalies of annual precipitation were relative to the 

30-year period from 1971 to 2000 taken from the PRISM climate database (PRISM Climate 

Group 2004). 

Fig. 11. Impact of the Biscuit Fire (> 2000 km2) in Oregon on annual GPP in 2004. (a) Burned 

area, (b) The dots represent fire detections from Terra MODIS and Aqua MODIS MODIS 

(USDA Forest Service MODIS Active Fire Mapping Program, http://activefiremaps.fs.fed.us). 

(c) Burn severity based on the difference normalized burn ratio (dNBR; Lutes et al. 2004) from 

Landsat Thematic Mapper (TM) data acquired before and immediately after the fire, (d) 

Annual GPP in 2003 (g C m"2 yr"1). 

Fig. 12. Impact of Hurricane Katrina on annual GPP in 2006. The units are g C m"2 yr"1. The 

white lines indicate the isotachs, including tropical storm, hurricane category 1, and hurricane 

category 2. 
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Fig. 1. Scatterplots of observed 8-day GPP versus predicted 8-day GPP. (a) Our estimate (y = 

0.85x + 0.37, R2 = 0.74, p < 0.0001). (b) MODIS GPP product (Running et al. 2004) (y = 

0.50x + 1.01, R2 = 0.58, p < 0.0001). For each plot, the solid line is the 1:1 line, and the dashed 

line is the regression line. 
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Fig. 2. Examples of time series plots of observed (open circles) and predicted (solid circles) 8-

day GPP (g C m2 day"1) for each AmeriFlux site over the period 2005-2006: (1) evergreen 

forests - AC (FL) and MRP (WI); (2) deciduous forests - DFH (NC); (3) mixed forests - SWA 

(MI); (4) shrublands - KSC (FL); (5) savannas - SRM (AZ), TR (CA), and VR (CA); (6) 
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grasslands - ARR (AZ); (7) croplands - MIC (NE). For x-axis, the starting dates (month/day) 

of every two 8-day intervals are provided in parentheses under interval numbers. Dashed lines 

are used to separate 2005 from 2006. Site abbreviations are used here, and their full names are 

given in Table 1. 

53 



T 1 1 1 1 1 1 1 1 r 

0 2 4 6 8 10 

Observed Mean 8-day GPP (g C nr2 day1) 

Fig. 3. Scatterplot of observed mean 8-day GPP versus predicted mean 8-day GPP across the 

AmeriFlux sites. Error bars are standard errors (defined as the standard deviation divided by 

the square root of the number of observations) of the observed and predicted 8-day mean GPP. 

The solid line indicates the 1:1 line, and the dashed Une indicates the regression line (y = 0.95 

* x + 0.21, R2 = 0.84, p < 0.0001). Site abbreviations are used here, and their full names are 

given in Table 1. 
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Fig. 4. Examples of leave-one-out cross-validation scatterplots with observed 8-day GPP 

versus predicted 8-day GPP: (1) evergreen forests - HF (y = 0.85x+1.00, R2 = 0.91, p < 
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0.0001) and NRF (y = 0.67x + 0.63, R2= 0.63, p < 0.0001); (2) deciduous forests - HFE (y = 

0.97x + 0.24, R2 = 0.87, p < 0.0001) and WC (y = 0.73x + 0.62, R2= 0.86, p < 0.0001); (3) 

mixed forests - SWA (y = 0.89x + 0.03, R2 = 0.89, p < 0.0001) and UMB (y = 0.92x + 0.66, 

R2= 0.93, p < 0.0001); (4) shrublands - KSC (y = 0.28x + 2.35, R2= 0.14, p < 0.0001); (5) 

savannas - FRM (y = 0.83x + 1.94, R2= 0.49, p < 0.001); (6) grasslands - GC (y = 0.76x + 

2.03, R2 = 0.55, p < 0.0001); (7) croplands - MR (y = 1.04x + 0.81, R2 = 0.86, p < 0.0001). 

The solid line indicates the 1:1 line, and the dashed Une indicates the regression line. Site 

abbreviations are used here, and their full names are given in Table 1. 
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Fig. 5. Leave-one-out cross-validation scatterplot of observed mean 8-day GPP versus 

predicted mean 8-day GPP across the AmeriFlux sites. Error bars are standard errors of the 

observed and predicted 8-day GPP. The solid line indicates the 1:1 line, and the dashed line 

indicates the regression line (y = 0.73 * x + 1.07, R2 = 0.69, p < 0.0001). Site abbreviations are 

used here, and their full names are given in Table 1. 
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Fig. 6. Monthly GPP (g C m"2 mo"1) for the conterminous U.S. from January through 

December in 2005. 
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Fig. 7. Spatially averaged and integrated 8-day GPP for each biome across the conterminous 

U.S. over the period 2001-2006. (a) Spatially averaged 8-day GPP (g C m"2 day"1), (b) Spatially 

integrated 8-day GPP (Tg C day"1). 
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Fig. 10. Annual GPP anomalies (g C m"2 yr"1) and annual precipitation anomalies (mm) for the 

conterminous U.S. for 2002 and 2006. The anomaUes of annual GPP were relative to the 6-

year period from 2001 to 2006, and the anomalies of annual precipitation were relative to the 

30-year period from 1971 to 2000 taken from the PRISM climate database (PRISM Climate 

Group 2004). 
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Fig. 11. Impact of the Biscuit Fire (> 2000 km2) in Oregon on annual GPP in 2004. (a) Burned 

area, (b) The dots represent fire detections from Terra MODIS and Aqua MODIS MODIS 

(USDA Forest Service MODIS Active Fire Mapping Program, http://activefiremaps.fs.fed.us). 

(c) Burn severity based on the difference normalized burn ratio (dNBR; Lutes et al. 2004) from 

Landsat Thematic Mapper (TM) data acquired before and immediately after the fire, (d) 

Annual GPP in 2003 (g C m2 yr"1). 
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-2 -1 Fig. 12. Impact of Hurricane Katrina on annual GPP in 2006. The units are g C m" yr" . The 

white lines indicate the isotachs, including tropical storm, hurricane category 1, and hurricane 

category 2. 
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