1,111 research outputs found
Technical note: Semiautomated targeted postmortem computed tomography angiography of the pulmonary arteries using a robotic system
INTRODUCTION
To better depict vascular lesions on postmortem computed tomography (PMCT), whole-body postmortem computed tomography angiography (PMCTA) can be used in forensic diagnostics. Targeted angiography, in which only a specific vessel is filled with contrast agent, might help in cases of traumatic changes that render whole-body PMCTA impossible. Moreover, in targeted PMCTA, the contrast agent does not affect the haptics of any other organs. In this article, we describe automated, CT-guided targeted angiography of the pulmonary artery (PA) using the Virtobot system.
MATERIAL AND METHODS
Our study group consisted of 8 deceased persons (3 males, 5 females). We first performed an unenhanced CT scan and used the data obtained to plan the needle trajectories with the Virtobot planning software. Then, the needle was fully automatically placed by the Virtobot system. Subsequently, 50 ml of contrast agent was injected manually, and the CT scan was repeated (targeted PMCTA).
RESULTS AND DISCUSSION
We tested a new method for performing semiautomated targeted postmortem angiography of the PAs using a robotic needle placement system (Virtobot). In 6 out of our 8 cases, the injection of contrast agent in the PA was successful. In five of the six successful cases, there was reflux of contrast agent to some extent, but the reflux did not affect the readout. In general, the procedure was easy to plan based on a PMCT data set, and the pulmonary trunk was easy to reach with a robotic needle placement system
The comparison of milk production and quality in cows from conventional and automatic milking systems
The objective of this study was to evaluate the effects of two different types of milking systems (conventional parlour . automatic milking system) and the season of the year on the composition and hygienic quality of milk from Czech cows. A total of 500 cows were involved; 200 and 300 in conventional and automatic milking systems, respectively. Bulk milk samples were collected for 12 months from July 2010 to June 2011. The following milk components and quality indicators were determined: % of fat, % of protein, % of lactose, % of fat-free dry matter (FFDM), % of casein, urea content, somatic cell count (SSC), total germ count (TGC) and milk freezing point (FP). The data were processed and evaluated with MS Excel and the statistical software SAS 9.1. Significantly higher contents of fat, protein, FFDM and casein and increased TGC were observed in the automatic milking system, whereas SCC and FP were significantly lower. The highest contents of fat, protein and casein, and the lowest lactose content were found in the winter season
Virtobot 2.0: the future of automated surface documentation and CT-guided needle placement in forensic medicine
In this paper we present the second prototype of a robotic system to be used in forensic medicine. The system is capable of performing automated surface documentation using photogrammetry, optical surface scanning and image-guided, post-mortem needle placement for tissue sampling, liquid sampling, or the placement of guide wires. The upgraded system includes workflow optimizations, an automatic tool-change mechanism, a new software module for trajectory planning and a fully automatic computed tomography-data-set registration algorithm. We tested the placement accuracy of the system by using a needle phantom with radiopaque markers as targets. The system is routinely used for surface documentation and resulted in 24 surface documentations over the course of 11months. We performed accuracy tests for needle placement using a biopsy phantom, and the Virtobot placed introducer needles with an accuracy of 1.4mm (±0.9mm). The second prototype of the Virtobot system is an upgrade of the first prototype but mainly focuses on streamlining the workflow and increasing the level of automation and also has an easier user interface. These upgrades make the Virtobot a potentially valuable tool for case documentation in a scalpel-free setting that uses purely imaging techniques and minimally invasive procedures and is the next step toward the future of virtual autopsy
A cross scale investigation of galena oxidation and controls on mobilization of lead in mine waste rock.
Abstract Galena and Pb-bearing secondary phases are the main sources of Pb in the terrestrial environment. Oxidative dissolution of galena releases aqueous Pb and SO4 to the surficial environment and commonly causes the formation of anglesite (in acidic environments) or cerussite (in alkaline environments). However, conditions prevalent in weathering environments are diverse and different reaction mechanisms reflect this variability at various scales. Here we applied complementary techniques across a range of scales, from nanometers to 10 s of meters, to study the oxidation of galena and accumulation of secondary phases that influence the release and mobilization of Pb within a sulfide-bearing waste-rock pile. Within the neutral-pH pore-water environment, the oxidation of galena releases Pb ions resulting in the formation of secondary Pb-bearing carbonate precipitates. Cerussite is the dominant phase and shannonite is a possible minor phase. Dissolved Cu from the pore water reacts at the surface of galena, forming covellite at the interface. Nanometer scale characterization suggests that secondary covellite is intergrown with secondary Pb-bearing carbonates at the interface. A small amount of the S derived from galena is sequestered with the secondary covellite, but the majority of the S is oxidized to sulfate and released to the pore water
Stainless steel made to rust: a robust water-splitting catalyst with benchmark characteristics
The oxygen evolution reaction (OER) is known as the efficiency-limiting step for the electrochemical cleavage of water mainly due to the large overpotentials commonly used materials on the anode side cause. Since Ni–Fe oxides reduce overpotentials occurring in the OER dramatically they are regarded as anode materials of choice for the electrocatalytically driven water-splitting reaction. We herewith show that a straightforward surface modification carried out with AISI 304, a general purpose austenitic stainless steel, very likely, based upon a dissolution mechanism, to result in the formation of an ultra-thin layer consisting of Ni, Fe oxide with a purity >99%. The Ni enriched thin layer firmly attached to the steel substrate is responsible for the unusual highly efficient anodic conversion of water into oxygen as demonstrated by the low overpotential of 212 mV at 12 mA cm−2 current density in 1 M KOH, 269.2 mV at 10 mA cm−2 current density in 0.1 M KOH respectively. The Ni, Fe-oxide layer formed on the steel creates a stable outer sphere, and the surface oxidized steel samples proved to be inert against longer operating times (>150 ks) in alkaline medium. In addition Faradaic efficiency measurements performed through chronopotentiometry revealed a charge to oxygen conversion close to 100%, thus underpinning the conclusion that no “inner oxidation” based on further oxidation of the metal matrix below the oxide layer occurs. These key figures achieved with an almost unrivalled-inexpensive and unrivalled-accessible material, are among the best ever presented activity characteristics for the anodic water-splitting reaction at pH 13
A human MAP kinase interactome.
Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps
Big data and data repurposing – using existing data to answer new questions in vascular dementia research
Introduction:
Traditional approaches to clinical research have, as yet, failed to provide effective treatments for vascular dementia (VaD). Novel approaches to collation and synthesis of data may allow for time and cost efficient hypothesis generating and testing. These approaches may have particular utility in helping us understand and treat a complex condition such as VaD.
Methods:
We present an overview of new uses for existing data to progress VaD research. The overview is the result of consultation with various stakeholders, focused literature review and learning from the group’s experience of successful approaches to data repurposing. In particular, we benefitted from the expert discussion and input of delegates at the 9th International Congress on Vascular Dementia (Ljubljana, 16-18th October 2015).
Results:
We agreed on key areas that could be of relevance to VaD research: systematic review of existing studies; individual patient level analyses of existing trials and cohorts and linking electronic health record data to other datasets. We illustrated each theme with a case-study of an existing project that has utilised this approach.
Conclusions:
There are many opportunities for the VaD research community to make better use of existing data. The volume of potentially available data is increasing and the opportunities for using these resources to progress the VaD research agenda are exciting. Of course, these approaches come with inherent limitations and biases, as bigger datasets are not necessarily better datasets and maintaining rigour and critical analysis will be key to optimising data use
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …