122 research outputs found

    Patient, health service factors and variation in mortality following resuscitated out-of-hospital cardiac arrest in acute coronary syndrome : analysis of the Myocardial Ischaemia National Audit Project

    Get PDF
    Aims To determine patient and health service factors associated with variation in hospital mortality among resuscitated cases of out-of-hospital cardiac arrest (OHCA) with acute coronary syndrome (ACS). Methods In this cohort study, we used the Myocardial Ischaemia National Audit Project database to study outcomes in patients hospitalised with resuscitated OHCA due to ACS between 2003 and 2015 in the United Kingdom. We analysed variation in inter-hospital mortality and used hierarchical multivariable regression models to examine the association between patient and health service factors with hospital mortality. Results We included 17604 patients across 239 hospitals. Overall hospital mortality was 28.7%. In 94 hospitals that contributed at least 60 cases, mortality by hospital ranged from 10.7% to 66.3% (median 28.6%, IQR 23.2% to 39.1%)). Patient and health service factors explained 36.1% of this variation. After adjustment for covariates, factors associated with higher hospital mortality included increasing serum glucose, ST-Elevation myocardial infarction (STEMI) diagnosis, and initial admission to a primary percutaneous coronary intervention (pPCI) capable hospital. Hospital OHCA volume was not associated with mortality. The key modifiable factor associated with lower mortality was early reperfusion therapy in STEMI patients. Conclusion There was wide variation in inter-hospital mortality following resuscitated OHCA due to ACS that was only partially explained by patient and health service factors. Hospital OHCA volume and pPCI capability were not associated with lower mortality. Early reperfusion therapy was associated with lower mortality in STEMI patients

    Variation in outcome of hospitalised patients with out-of-hospital cardiac arrest from acute coronary syndrome : a cohort study

    Get PDF
    Background Each year, approximately 30,000 people have an out-of-hospital cardiac arrest (OHCA) that is treated by UK ambulance services. Across all cases of OHCA, survival to hospital discharge is less than 10%. Acute coronary syndrome (ACS) is a common cause of OHCA. Objectives To explore factors that influence survival in patients who initially survive an OHCA attributable to ACS. Data source Data collected by the Myocardial Ischaemia National Audit Project (MINAP) between 2003 and 2015. Participants Adult patients who had a first OHCA attributable to ACS and who were successfully resuscitated and admitted to hospital. Main outcome measures Hospital mortality, neurological outcome at hospital discharge, and time to all-cause mortality. Methods We undertook a cohort study using data from the MINAP registry. MINAP is a national audit that collects data on patients admitted to English, Welsh and Northern Irish hospitals with myocardial ischaemia. From the data set, we identified patients who had an OHCA. We used imputation to address data missingness across the data set. We analysed data using multilevel logistic regression to identify modifiable and non-modifiable factors that affect outcome. Results Between 2003 and 2015, 1,127,140 patient cases were included in the MINAP data set. Of these, 17,604 OHCA cases met the study inclusion criteria. Overall hospital survival was 71.3%. Across hospitals with at least 60 cases, hospital survival ranged from 34% to 89% (median 71.4%, interquartile range 60.7–76.9%). Modelling, which adjusted for patient and treatment characteristics, could account for only 36.1% of this variability. For the primary outcome, the key modifiable factors associated with reduced mortality were reperfusion treatment [primary percutaneous coronary intervention (pPCI) or thrombolysis] and admission under a cardiologist. Admission to a high-volume cardiac arrest hospital did not influence survival. Sensitivity analyses showed that reperfusion was associated with reduced mortality among patients with a ST elevation myocardial infarction (STEMI), but there was no evidence of a reduction in mortality in patients who did not present with a STEMI. Limitations This was an observational study, such that unmeasured confounders may have influenced study findings. Differences in case identification processes at hospitals may contribute to an ascertainment bias. Conclusions In OHCA patients who have had a cardiac arrest attributable to ACS, there is evidence of variability in survival between hospitals, which cannot be fully explained by variables captured in the MINAP data set. Our findings provide some support for the current practice of transferring resuscitated patients with a STEMI to a hospital that can deliver pPCI. In contrast, it may be reasonable to transfer patients without a STEMI to the nearest appropriate hospital. Future work There is a need for clinical trials to examine the clinical effectiveness and cost-effectiveness of invasive reperfusion strategies in resuscitated OHCA patients of cardiac cause who have not had a STEMI. Funding The National Institute for Health Research Health Services and Delivery Research programme

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Caring international research collaborative: A five-country partnership to measure perception of nursing staffs' compassion fatigue, burnout, and caring for self

    Get PDF
    Partnering in research across disciplines and across countries can be challenging due to differing contexts of practice and culture. This study sought to demonstrate how central constructs that have application across disciplines and countries can be studied while concurrently considering context. Groups of nurses from Botswana, Ireland, Israel, New Zealand, and Spain partnered to identify how to measure the constructs of caring for self, burnout, and compassion fatigue, replicating a study by Johnson (2012), who found that caring for self had a moderately strong negative relationship with both compassion fatigue and burnout. While these constructs were of interest to all five groups, the conversation of contextual influences varied. All five groups used the same instruments to measure the central constructs. Levels of burnout and compassion fatigue varied by country but were moderated by caring for self. Partnering across countries made it possible to understand that caring for self moderates the negative impact of burnout and compassion fatigue in all five countries. This study gives insight into methods for partnering across disciplines and contexts

    The James Webb Space Telescope Mission: Optical Telescope Element Design, Development, and Performance

    Full text link
    The James Webb Space Telescope (JWST) is a large, infrared space telescope that has recently started its science program which will enable breakthroughs in astrophysics and planetary science. Notably, JWST will provide the very first observations of the earliest luminous objects in the Universe and start a new era of exoplanet atmospheric characterization. This transformative science is enabled by a 6.6 m telescope that is passively cooled with a 5-layer sunshield. The primary mirror is comprised of 18 controllable, low areal density hexagonal segments, that were aligned and phased relative to each other in orbit using innovative image-based wavefront sensing and control algorithms. This revolutionary telescope took more than two decades to develop with a widely distributed team across engineering disciplines. We present an overview of the telescope requirements, architecture, development, superb on-orbit performance, and lessons learned. JWST successfully demonstrates a segmented aperture space telescope and establishes a path to building even larger space telescopes.Comment: accepted by PASP for JWST Overview Special Issue; 34 pages, 25 figure

    Identification of the top TESS objects of interest for atmospheric characterization of transiting exoplanets with JWST

    Get PDF
    Funding: Funding for the TESS mission is provided by NASA's Science Mission Directorate. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. This paper is based on observations made with the MuSCAT3 instrument, developed by the Astrobiology Center and under financial support by JSPS KAKENHI (grant No. JP18H05439) and JST PRESTO (grant No. JPMJPR1775), at Faulkes Telescope North on Maui, HI, operated by the Las Cumbres Observatory. This paper makes use of data from the MEarth Project, which is a collaboration between Harvard University and the Smithsonian Astrophysical Observatory. The MEarth Project acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering, the National Science Foundation under grant Nos. AST-0807690, AST-1109468, AST-1616624 and AST-1004488 (Alan T. Waterman Award), the National Aeronautics and Space Administration under grant No. 80NSSC18K0476 issued through the XRP Program, and the John Templeton Foundation. C.M. would like to gratefully acknowledge the entire Dragonfly Telephoto Array team, and Bob Abraham in particular, for allowing their telescope bright time to be put to use observing exoplanets. B.J.H. acknowledges support from the Future Investigators in NASA Earth and Space Science and Technology (FINESST) program (grant No. 80NSSC20K1551) and support by NASA under grant No. 80GSFC21M0002. K.A.C. and C.N.W. acknowledge support from the TESS mission via subaward s3449 from MIT. D.R.C. and C.A.C. acknowledge support from NASA through the XRP grant No. 18-2XRP18_2-0007. C.A.C. acknowledges that this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). S.Z. and A.B. acknowledge support from the Israel Ministry of Science and Technology (grant No. 3-18143). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant No. PDR T.0120.21. The postdoctoral fellowship of K.B. is funded by F.R.S.-FNRS grant No. T.0109.20 and by the Francqui Foundation. H.P.O.'s contribution has been carried out within the framework of the NCCR PlanetS supported by the Swiss National Science Foundation under grant Nos. 51NF40_182901 and 51NF40_205606. F.J.P. acknowledges financial support from the grant No. CEX2021-001131-S funded by MCIN/AEI/ 10.13039/501100011033. A.J. acknowledges support from ANID—Millennium Science Initiative—ICN12_009 and from FONDECYT project 1210718. Z.L.D. acknowledges the MIT Presidential Fellowship and that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. 1745302. P.R. acknowledges support from the National Science Foundation grant No. 1952545. This work is partly supported by JSPS KAKENHI grant Nos. JP17H04574, JP18H05439, JP21K20376; JST CREST grant No. JPMJCR1761; and Astrobiology Center SATELLITE Research project AB022006. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T. D.D. acknowledges support from TESS Guest Investigator Program grant Nos. 80NSSC22K1353, 80NSSC22K0185, and 80NSSC23K0769. A.B. acknowledges the support of M.V. Lomonosov Moscow State University Program of Development. T.D. was supported in part by the McDonnell Center for the Space Sciences. V.K. acknowledges support from the youth scientific laboratory project, topic FEUZ-2020-0038.JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperature Teq and planetary radius Rp and are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community.Peer reviewe

    Following the genes: a framework for animal modeling of psychiatric disorders

    Get PDF
    The number of individual cases of psychiatric disorders that can be ascribed to identified, rare, single mutations is increasing with great rapidity. Such mutations can be recapitulated in mice to generate animal models with direct etiological validity. Defining the underlying pathogenic mechanisms will require an experimental and theoretical framework to make the links from mutation to altered behavior in an animal or psychopathology in a human. Here, we discuss key elements of such a framework, including cell type-based phenotyping, developmental trajectories, linking circuit properties at micro and macro scales and definition of neurobiological phenotypes that are directly translatable to humans

    Suppressing quantum errors by scaling a surface code logical qubit

    Full text link
    Practical quantum computing will require error rates that are well below what is achievable with physical qubits. Quantum error correction offers a path to algorithmically-relevant error rates by encoding logical qubits within many physical qubits, where increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low in order for logical performance to improve with increasing code size. Here, we report the measurement of logical qubit performance scaling across multiple code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, both in terms of logical error probability over 25 cycles and logical error per cycle (2.914%±0.016%2.914\%\pm 0.016\% compared to 3.028%±0.023%3.028\%\pm 0.023\%). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a 1.7×1061.7\times10^{-6} logical error per round floor set by a single high-energy event (1.6×1071.6\times10^{-7} when excluding this event). We are able to accurately model our experiment, and from this model we can extract error budgets that highlight the biggest challenges for future systems. These results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number, illuminating the path to reaching the logical error rates required for computation.Comment: Main text: 6 pages, 4 figures. v2: Update author list, references, Fig. S12, Table I

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore