47 research outputs found

    Diffusion and Home Range Parameters from Rodent Population Measurements in Panama

    Full text link
    Simple random walk considerations are used to interpret rodent population data collected in Hantavirus-related investigations in Panama regarding the short-tailed cane mouse, \emph{Zygodontomys brevicauda}. The diffusion constant of mice is evaluated to be of the order of (and larger than) 200 meters squared per day. The investigation also shows that the rodent mean square displacement saturates in time, indicating the existence of a spatial scale which could, in principle, be the home range of the rodents. This home range is concluded to be of the order of 70 meters. Theoretical analysis is provided for interpreting animal movement data in terms of an interplay of the home ranges, the diffusion constant, and the size of the grid used to monitor the movement. The study gives impetus to a substantial modification of existing theory of the spread of the Hantavirus epidemic which has been based on simple diffusive motion of the rodents, and additionally emphasizes the importance for developing more accurate techniques for the measurement of rodent movement.Comment: 18 pages, 5 figure

    Data Descriptor : A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    Get PDF
    Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.Peer reviewe

    A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    Get PDF

    Sediment respiration pulses in intermittent rivers and ephemeral streams

    Get PDF
    Intermittent rivers and ephemeral streams (IRES) may represent over half the global stream network, but their contribution to respiration and carbon dioxide (CO2) emissions is largely undetermined. In particular, little is known about the variability and drivers of respiration in IRES sediments upon rewetting, which could result in large pulses of CO2. We present a global study examining sediments from 200 dry IRES reaches spanning multiple biomes. Results from standardized assays show that mean respiration increased 32–66‐fold upon sediment rewetting. Structural equation modelling indicates that this response was driven by sediment texture and organic matter quantity and quality, which, in turn, were influenced by climate, land use and riparian plant cover. Our estimates suggest that respiration pulses resulting from rewetting of IRES sediments could contribute significantly to annual CO2 emissions from the global stream network, with a single respiration pulse potentially increasing emission by 0.2–0.7%. As the spatial and temporal extent of IRES increases globally, our results highlight the importance of recognizing the influence of wetting‐drying cycles on respiration and CO2 emissions in stream networks

    Twist exome capture allows for lower average sequence coverage in clinical exome sequencing

    Get PDF
    Background Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. Results We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. Conclusion We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques

    Enhancing maternal mental health

    No full text
    corecore