151 research outputs found

    Effective interactions, Fermi-Bose duality, and ground states of ultracold atomic vapors in tight de Broglie waveguides

    Full text link
    Derivation of effective zero-range one-dimensional (1D) interactions between atoms in tight waveguides is reviewed, as is the Fermi-Bose mapping method for determination of exact and strongly-correlated states of ultracold bosonic and fermionic atomic vapors in such waveguides, including spin degrees of freedom. Odd-wave 1D interactions derived from 3D p-wave scattering are included as well as the usual even-wave interactions derived from 3D s-wave scattering, with emphasis on the role of 3D Feshbach resonances for selectively enhancing s-wave or p-wave interactions. A duality between 1D fermions and bosons with zero-range interactions suggested by Cheon and Shigehara is shown to hold for the effective 1D dynamics of a spinor Fermi gas with both even and odd-wave interactions and that of a spinor Bose gas with even and odd-wave interactions, with even(odd)-wave Bose coupling constants inversely related to odd(even)-wave Fermi coupling constants. Some recent applications of Fermi-Bose mapping to determination of many-body ground states of Bose gases and of both magnetically trapped, spin-aligned and optically trapped, spin-free Fermi gases are described, and a new generalized Fermi-Bose mapping is used to determine the phase diagram of ground-state total spin of the spinor Fermi gas as a function of the even and odd-wave coupling constants.Comment: 16 pages, 3 figures. Submitted to Optics Communications for special issue "Degenerate Quantum Gases

    The Importance of Context in Understanding Homelessness and Mental Illness: Lessons Learned From a Research Demonstration Project

    Full text link
    Research reports on the housing outcomes for persons who are homeless and mentally ill have focused on client characteristics, program type, and services as independent variables, with mixed results. From social work practice, evaluation theory, and public policy perspectives, context is an important variable. Yet, it has received scant research attention in studies of the outcomes of persons who are mentally ill and homeless. This article summarizes research results from a demonstration project providing outreach or linkage services to this target population, illustrating the significant impact of context variables (site and recruitment source) on client characteristics, implementation, qualitative and quantitative service assessments, and housing outcomes. The discussion suggests how these contextual factors may operate, and it goes on to make recommendations to improve social work research and practice concerning the important dimensions of context that should be assessed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69136/2/10.1177_104973159800800203.pd

    Brain neurotransmitter transporter/receptor genomics and efavirenz central nervous system adverse events

    Get PDF
    Objective We characterized associations between central nervous system (CNS) adverse events and brain neurotransmitter transporter/receptor genomics among participants randomized to efavirenz-containing regimens in AIDS Clinical Trials Group studies in the USA. Participants and methods Four clinical trials randomly assigned treatment-naive participants to efavirenzcontaining regimens. Genome-wide genotype and PrediXcan were used to infer gene expression levels in tissues including 10 brain regions. Multivariable regression models stratified by race/ethnicity were adjusted for CYP2B6/CYP2A6 genotypes that predict plasma efavirenz exposure, age, and sex. Combined analyses also adjusted for genetic ancestry. Results Analyses included 167 cases with grade 2 or greater efavirenz-consistent CNS adverse events within 48 weeks of study entry, and 653 efavirenz-tolerant controls. CYP2B6/CYP2A6 genotype level was independently associated with CNS adverse events (odds ratio: 1.07; P=0.044). Predicted expression of six genes postulated to mediate efavirenz CNS side effects (SLC6A2, SLC6A3, PGR, HTR2A, HTR2B, HTR6) were not associated with CNS adverse events after correcting for multiple testing, the lowest P value being for PGR in hippocampus (P=0.012), nor were polymorphisms in these genes or AR and HTR2C, the lowest P value being for rs12393326 in HTR2C (P=6.7 × 10-4). As a positive control, baseline plasma bilirubin concentration was associated with predicted liver UGT1A1 expression level (P=1.9 × 10-27). Conclusion Efavirenz-related CNS adverse events were not associated with predicted neurotransmitter transporter/receptor gene expression levels in brain or with polymorphisms in these genes. Variable susceptibility to efavirenz-related CNS adverse events may not be explained by brain neurotransmitter transporter/receptor genomics

    A Quantum-mechanical Approach for Constrained Macromolecular Chains

    Full text link
    Many approaches to three-dimensional constrained macromolecular chains at thermal equilibrium, at about room temperatures, are based upon constrained Classical Hamiltonian Dynamics (cCHDa). Quantum-mechanical approaches (QMa) have also been treated by different researchers for decades. QMa address a fundamental issue (constraints versus the uncertainty principle) and are versatile: they also yield classical descriptions (which may not coincide with those from cCHDa, although they may agree for certain relevant quantities). Open issues include whether QMa have enough practical consequences which differ from and/or improve those from cCHDa. We shall treat cCHDa briefly and deal with QMa, by outlining old approaches and focusing on recent ones.Comment: Expands review published in The European Physical Journal (Special Topics) Vol. 200, pp. 225-258 (2011

    Quadrupole and octupole collectivity in Ba 143

    Get PDF
    The neutron-rich barium nuclei have been the subject of intense interest due to the enhanced octupole correlations they are predicted to exhibit. The observation of enhanced octupole collectivity in Ba144,146 as measured in sub-barrier Coulomb excitation, consistent with static octupole deformation, has further heightened this interest. In the present work, these studies are extended to the neighboring odd-mass Ba143 to investigate the interplay between single-particle and collective octupole degrees of freedom. A new measurement of the first 92 - state lifetime is also presented. Reflection-Asymmetric Triaxial Particle Rotor Model calculations indicate that the negative-parity bands in Ba143 can be understood as a decoupled structure of Îœh9/2 parentage, while the positive-parity bands are built on a decoupled octupole phonon. No evidence for E3 excitation is observed in this work, but an upper limit is placed on the E3 matrix element to the lowest octupole band

    Scientific rationale for Uranus and Neptune <i>in situ</i> explorations

    Get PDF
    The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ∌70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission
    • 

    corecore