719 research outputs found

    Polymer Translocation Through a Long Nanopore

    Full text link
    Polymer translocation through a nanopore in a membrane investigated theoretically. Recent experiments on voltage-driven DNA and RNA translocations through a nanopore indicate that the size and geometry of the pore are important factors in polymer dynamics. A theoretical approach is presented which explicitly takes into account the effect of the nanopore length and diameter for polymer motion across the membrane. It is shown that the length of the pore is crucial for polymer translocation dynamics. The present model predicts that for realistic conditions (long nanopores and large external fields) there are two regimes of translocation depending on polymer size: for polymer chains larger than the pore length, the velocity of translocation is nearly constant, while for polymer chains smaller than the pore length the velocity increases with decreasing polymer size. These results agree with experimental data.Comment: 14 pages, 5 figure

    Translocation of polymers with folded configurations across nanopores

    Full text link
    The transport of polymers with folded configurations across membrane pores is investigated theoretically by analyzing simple discrete stochastic models. The translocation dynamics is viewed as a sequence of two events: motion of the folded segment through the channel followed by the linear part of the polymer. The transition rates vary for the folded and linear segments because of different interactions between the polymer molecule and the pore. It is shown that the translocation time depends non-monotonously on the length of the folded segment for short polymers and weak external fields, while it becomes monotonous for long molecules and large fields. Also, there is a critical interaction between the polymers and the pore that separates two dynamic regimes. For stronger interactions the folded polymer moves slower, while for weaker interactions the linear chain translocation is the fastest. In addition, our calculations show that the folding does not change the translocation scaling properties of the polymer. These phenomena can be explained by the interplay between the translocation distances and transition rates for the folded and linear segments of the polymer. Theoretical results are applied for analysis of experimental translocations through solid-state nanopores.Comment: submitted to J. Chem. Phy
    • …
    corecore