1,886 research outputs found

    Definition of the 2005 flight deck environment

    Get PDF
    A detailed description of the functional requirements necessary to complete any normal commercial flight or to handle any plausible abnormal situation is provided. This analysis is enhanced with an examination of possible future developments and constraints in the areas of air traffic organization and flight deck technologies (including new devices and procedures) which may influence the design of 2005 flight decks. This study includes a discussion on the importance of a systematic approach to identifying and solving flight deck information management issues, and a description of how the present work can be utilized as part of this approach. While the intent of this study was to investigate issues surrounding information management in 2005-era supersonic commercial transports, this document may be applicable to any research endeavor related to future flight deck system design in either supersonic or subsonic airplane development

    Efimov Trimer Formation via Ultracold Four-body Recombination

    Full text link
    We discuss the collisional formation of Efimov trimers via ultracold four-body recombination. In particular, we consider the reaction A+A+A+B->A3+B with A and B ultracold atoms. We obtain expressions for the four-body recombination rate and show that it reflects the three-body Efimov physics either as a function of collision energy or as a function of the two-body s-wave scattering length between A atoms. In addition, we briefly discuss issues important for experimentally observing this interesting and relatively unexplored process.Comment: 5 pages, 3 figure

    Lifetime of molecule-atom mixtures near a Feshbach resonance in 40K

    Full text link
    We report a dramatic magnetic field dependence in the lifetime of trapped, ultracold diatomic molecules created through an s-wave Feshbach resonance in 40K. The molecule lifetime increases from less than 1 ms away from the Feshbach resonance to greater than 100 ms near resonance. We also have measured the trapped atom lifetime as a function of magnetic field near the Feshbach resonance; we find that the atom loss is more pronounced on the side of the resonance containing the molecular bound state

    Vibration Analysis of Cracked Composite Plate

    Get PDF
    Composite materials are widely used in different arenas such as aircraft, naval and automobiles. Main motive behind that is the distinctive property of weight reduction, which is important for greater speeds, improved payloads and efficient fuel consumption. Various damages like cracks or delamination are inevitable during service period. They may be due to impact load, chemical decay or change in temperature or pressure conditions. It has been experimentally proved that confined damage in a structure causes the reduction in local structural stiffness, resulting in deviations in dynamic performance of the structure. Additional resonance or crack proliferation induce large displacements resulting in the failure of the structure. In this study, efforts have been made to determine the natural frequency of vibration of composite plate in different boundary conditions and the multiple parameters of crack have been varied and the results have been established. The tests on composite plate is done experimentally to find natural frequency using FFT analyser and the results are validated using ANSYS. The work is done with varying crack parameters like depth, length and orientation. The frequency decreases with increase in crack dimensions and decreases with increasing orientations. For different boundary conditions, frequency increases with decreasing degrees of freedom. This will help in designing structures resistant to earthquakes and other disasters, given that the resonance frequency is known earlier. It will help in building a safe structure and will prolong its life for many years

    Fermi Condensates

    Full text link
    Ultracold atomic gases have proven to be remarkable model systems for exploring quantum mechanical phenomena. Experimental work on gases of fermionic atoms in particular has seen large recent progress including the attainment of so-called Fermi condensates. In this article we will discuss this recent development and the unique control over interparticle interactions that made it possible.Comment: Proceedings of ICAP-2004 (Rio de Janeiro). Review of Potassium experiment at JILA, Boulder, C

    Cooling a single atom in an optical tweezer to its quantum ground state

    Full text link
    We report cooling of a single neutral atom to its three-dimensional vibrational ground state in an optical tweezer. After employing Raman sideband cooling for tens of milliseconds, we measure via sideband spectroscopy a three-dimensional ground-state occupation of ~90%. We further observe coherent control of the spin and motional state of the trapped atom. Our demonstration shows that an optical tweezer, formed simply by a tightly focused beam of light, creates sufficient confinement for efficient sideband cooling. This source of ground-state neutral atoms will be instrumental in numerous quantum simulation and logic applications that require a versatile platform for storing and manipulating ultracold single neutral atoms. For example, these results will improve current optical tweezer experiments studying atom-photon coupling and Rydberg quantum logic gates, and could provide new opportunities such as rapid production of single dipolar molecules or quantum simulation in tweezer arrays.Comment: Updated intro, titl
    corecore