643 research outputs found

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the t¯tZ and t¯tW cross sections in proton-proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of the associated production of a top-quark pair (t¯t) with a vector boson (W, Z) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using 36.1  fb−1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement. The t¯tZ and t¯tW production cross sections are simultaneously measured using a combined fit to all regions. The best-fit values of the production cross sections are σt¯tZ=0.95±0.08stat±0.10syst pb and σt¯tW=0.87±0.13stat±0.14syst pb in agreement with the Standard Model predictions. The measurement of the t¯tZ cross section is used to set constraints on effective field theory operators which modify the t¯tZ vertex

    Early chronic kidney disease: diagnosis, management and models of care

    Get PDF
    Chronic kidney disease (CKD) is prevalent in many countries, and the costs associated with the care of patients with end-stage renal disease (ESRD) are estimated to exceed US$1 trillion globally. The clinical and economic rationale for the design of timely and appropriate health system responses to limit the progression of CKD to ESRD is clear. Clinical care might improve if early-stage CKD with risk of progression to ESRD is differentiated from early-stage CKD that is unlikely to advance. The diagnostic tests that are currently used for CKD exhibit key limitations; therefore, additional research is required to increase awareness of the risk factors for CKD progression. Systems modelling can be used to evaluate the impact of different care models on CKD outcomes and costs. The US Indian Health Service has demonstrated that an integrated, system-wide approach can produce notable benefits on cardiovascular and renal health outcomes. Economic and clinical improvements might, therefore, be possible if CKD is reconceptualized as a part of primary care. This Review discusses which early CKD interventions are appropriate, the optimum time to provide clinical care, and the most suitable model of care to adopt

    A pilot study of exercise in men with prostate cancer receiving androgen deprivation therapy

    Get PDF
    Abstract Background Androgen deprivation therapy (ADT) is the mainstay therapy for men with prostate cancer. However, there are musculoskeletal side effects from ADT that increase the risk for osteoporosis and fracture, and can compromise the quality of life of these individuals. The objectives of this study are to determine the efficacy of a home-based walking exercise program in promoting bone health, physical function and quality of life in men with prostate cancer receiving ADT. Methods/Design A 12-month prospective, single-blinded, randomized controlled trial will be conducted to compare the Exercise Group with the Control Group. Sixty men with prostate cancer who will be starting ADT will be recruited and randomly assigned to one of the two groups: the Exercise Group will receive instructions in setting up an individualized 12-month home-based walking exercise program, while the Control Group will receive standard medical advice from the attending physician. A number of outcome measures will be used to assess bone health, physical function, and health-related quality of life. At baseline and 12 months, bone health will be assessed using dual-energy X-ray absorptiometry. At baseline and every 3 months up to 12 months, physical function will be evaluated using the Functional Assessment of Chronic Illness Therapy - Fatigue Scale, Activities-specific Balance Confidence Scale, Short Physical Performance Battery, and Six-Minute Walk Test; and health-related quality of life will be assessed using the Functional Assessment of Cancer Therapy Prostate Module and the Medical Outcomes Study 12-item Short Form Health Survey Version 2. A mixed multiple analysis of variance will be used to analyze the data. Discussion Musculoskeletal health management remains a challenge in men with prostate cancer receiving ADT. This study addresses this issue by designing a simple and accessible home-based walking exercise program that will potentially have significant impact on reducing the risk of fracture, promoting physical function, and ultimately improving the health-related quality of life in men with prostate cancer receiving ADT. Trial registration ClinicalTrials.gov: NCT00834392.Peer Reviewe

    Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV

    Get PDF
    Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than 355 GeV and the other top quark decays into ℓνb are presented using 139 fb−1 of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at s = 13 TeV is measured to be σ = 1.267 ± 0.005 ± 0.053 pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of 4.2%. The cross-section is measured differentially as a function of variables characterising the tt¯ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to search for new physics in the context of the effective field theory framework. No significant deviation from the Standard Model is observed and limits are set on the Wilson coefficients of the dimension-six operators OtG and Otq(8), where the limits on the latter are the most stringent to date. [Figure not available: see fulltext.]

    Two-particle azimuthal correlations in photonuclear ultraperipheral Pb plus Pb collisions at 5.02 TeV with ATLAS

    Get PDF
    Two-particle long-range azimuthal correlations are measured in photonuclear collisions using 1.7 nb − 1 of 5.02 TeV Pb + Pb collision data collected by the ATLAS experiment at the CERN Large Hadron Collider. Candidate events are selected using a dedicated high-multiplicity photonuclear event trigger, a combination of information from the zero-degree calorimeters and forward calorimeters, and from pseudorapidity gaps constructed using calorimeter energy clusters and charged-particle tracks. Distributions of event properties are compared between data and Monte Carlo simulations of photonuclear processes. Two-particle correlation functions are formed using charged-particle tracks in the selected events, and a template-fitting method is employed to subtract the nonflow contribution to the correlation. Significant nonzero values of the second- and third-order flow coefficients are observed and presented as a function of charged-particle multiplicity and transverse momentum. The results are compared with flow coefficients obtained in proton-proton and proton-lead collisions in similar multiplicity ranges, and with theoretical expectations. The unique initial conditions present in this measurement provide a new way to probe the origin of the collective signatures previously observed only in hadronic collision

    Measurements of sensor radiation damage in the ATLAS inner detector using leakage currents

    Get PDF
    Non-ionizing energy loss causes bulk damage to the silicon sensors of the ATLAS pixel and strip detectors. This damage has important implications for data-taking operations, charged-particle track reconstruction, detector simulations, and physics analysis. This paper presents simulations and measurements of the leakage current in the ATLAS pixel detector and semiconductor tracker as a function of location in the detector and time, using data collected in Run 1 (2010–2012) and Run 2 (2015–2018) of the Large Hadron Collider. The extracted fluence shows a much stronger |z|-dependence in the innermost layers than is seen in simulation. Furthermore, the overall fluence on the second innermost layer is significantly higher than in simulation, with better agreement in layers at higher radii. These measurements are important for validating the simulation models and can be used in part to justify safety factors for future detector designs and interventions.publishedVersio

    Improving topological cluster reconstruction using calorimeter cell timing in ATLAS

    Get PDF
    Clusters of topologically connected calorimeter cells around cells with large absolute signal-to-noise ratio (topo-clusters) are the basis for calorimeter signal reconstruction in the ATLAS experiment. Topological cell clustering has proven performant in LHC Runs 1 and 2. It is, however, susceptible to out-of-time pile-up of signals from soft collisions outside the 25 ns proton-bunch-crossing window associated with the event’s hard collision. To reduce this effect, a calorimeter-cell timing criterion was added to the signal-to-noise ratio requirement in the clustering algorithm. Multiple versions of this criterion were tested by reconstructing hadronic signals in simulated events and Run 2 ATLAS data. The preferred version is found to reduce the out-of-time pile-up jet multiplicity by ∼50% for jet pT ∼ 20 GeV and by ∼80% for jet pT 50 GeV, while not disrupting the reconstruction of hadronic signals of interest, and improving the jet energy resolution by up to 5% for 20 < pT < 30 GeV. Pile-up is also suppressed for other physics objects based on topo-clusters (electrons, photons, τ -leptons), reducing the overall event size on disk by about 6% in early Run 3 pileup conditions. Offline reconstruction for Run 3 includes the timing requirement

    Software Performance of the ATLAS Track Reconstruction for LHC Run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two
    corecore