468 research outputs found
Quantum-inspired interferometry with chirped laser pulses
We introduce and implement an interferometric technique based on chirped
femtosecond laser pulses and nonlinear optics. The interference manifests as a
high-visibility (> 85%) phase-insensitive dip in the intensity of an optical
beam when the two interferometer arms are equal to within the coherence length
of the light. This signature is unique in classical interferometry, but is a
direct analogue to Hong-Ou-Mandel quantum interference. Our technique exhibits
all the metrological advantages of the quantum interferometer, but with signals
at least 10^7 times greater. In particular we demonstrate enhanced resolution,
robustness against loss, and automatic dispersion cancellation. Our
interferometer offers significant advantages over previous technologies, both
quantum and classical, in precision time delay measurements and biomedical
imaging.Comment: 6 pages, 4 figure
Biological measurement beyond the quantum limit
Quantum noise places a fundamental limit on the per photon sensitivity
attainable in optical measurements. This limit is of particular importance in
biological measurements, where the optical power must be constrained to avoid
damage to the specimen. By using non-classically correlated light, we
demonstrated that the quantum limit can be surpassed in biological
measurements. Quantum enhanced microrheology was performed within yeast cells
by tracking naturally occurring lipid granules with sensitivity 2.4 dB beyond
the quantum noise limit. The viscoelastic properties of the cytoplasm could
thereby be determined with a 64% improved measurement rate. This demonstration
paves the way to apply quantum resources broadly in a biological context
Spectral compression of single photons
Photons are critical to quantum technologies since they can be used for
virtually all quantum information tasks: in quantum metrology, as the
information carrier in photonic quantum computation, as a mediator in hybrid
systems, and to establish long distance networks. The physical characteristics
of photons in these applications differ drastically; spectral bandwidths span
12 orders of magnitude from 50 THz for quantum-optical coherence tomography to
50 Hz for certain quantum memories. Combining these technologies requires
coherent interfaces that reversibly map centre frequencies and bandwidths of
photons to avoid excessive loss. Here we demonstrate bandwidth compression of
single photons by a factor 40 and tunability over a range 70 times that
bandwidth via sum-frequency generation with chirped laser pulses. This
constitutes a time-to-frequency interface for light capable of converting
time-bin to colour entanglement and enables ultrafast timing measurements. It
is a step toward arbitrary waveform generation for single and entangled
photons.Comment: 6 pages (4 figures) + 6 pages (3 figures
Quantum interferometry with three-dimensional geometry
Quantum interferometry uses quantum resources to improve phase estimation
with respect to classical methods. Here we propose and theoretically
investigate a new quantum interferometric scheme based on three-dimensional
waveguide devices. These can be implemented by femtosecond laser waveguide
writing, recently adopted for quantum applications. In particular, multiarm
interferometers include "tritter" and "quarter" as basic elements,
corresponding to the generalization of a beam splitter to a 3- and 4-port
splitter, respectively. By injecting Fock states in the input ports of such
interferometers, fringe patterns characterized by nonclassical visibilities are
expected. This enables outperforming the quantum Fisher information obtained
with classical fields in phase estimation. We also discuss the possibility of
achieving the simultaneous estimation of more than one optical phase. This
approach is expected to open new perspectives to quantum enhanced sensing and
metrology performed in integrated photonic.Comment: 7 pages (+4 Supplementary Information), 5 figure
Influence of the Temperature and the Genotype of the HSP90AA1 Gene over Sperm Chromatin Stability in Manchega Rams
The present study addresses the effect of heat stress on males' reproduction ability. For that, we have evaluated the sperm DNA fragmentation (DFI) by SCSA of ejaculates incubated at 37°C during 0, 24 and 48 hours after its collection, as a way to mimic the temperature circumstances to which spermatozoa will be subject to in the ewe uterus. The effects of temperature and temperature-humidity index (THI) from day 60 prior collection to the date of semen collection on DFI were examined. To better understand the causes determining the sensitivity of spermatozoa to heat, this study was conducted in 60 males with alternative genotypes for the SNP G/C−660 of the HSP90AA1 promoter, which encode for the Hsp90α protein. The Hsp90α protein predominates in the brain and testis, and its role in spermatogenesis has been described in several species. Ridge regression analyses showed that days 29 to 35 and 7 to 14 before sperm collection (bsc) were the most critical regarding the effect of heat stress over DFI values. Mixed model analyses revealed that DFI increases over a threshold of 30°C for maximum temperature and 22 for THI at days 29 to 35 and 7 to 14 bsc only in animals carrying the GG−660 genotype. The period 29–35 bsc coincide with the meiosis I process for which the effect of the Hsp90α has been described in mice. The period 7–14 bsc may correspond with later stages of the meiosis II and early stages of epididymal maturation in which the replacement of histones by protamines occurs. Because of GG−660 genotype has been associated to lower levels of HSP90AA1 expression, suboptimal amounts of HSP90AA1 mRNA in GG−660 animals under heat stress conditions make spermatozoa DNA more susceptible to be fragmented. Thus, selecting against the GG−660 genotype could decrease the DNA fragmentation and spermatozoa thermal susceptibility in the heat season, and its putative subsequent fertility gainsPublishe
Exploring perceptions of advertising ethics: an informant-derived approach
Whilst considerable research exists on determining consumer responses to pre-determined statements within numerous ad ethics contexts, our understanding of consumer thoughts regarding ad ethics in general remains lacking. The purpose of our study therefore is to provide a first illustration of an emic and informant-based derivation of perceived ad ethics. The authors use multi-dimensional scaling as an approach enabling the emic, or locally derived deconstruction of perceived ad ethics. Given recent calls to develop our understanding of ad ethics in different cultural contexts, and in particular within the Middle East and North Africa (MENA) region, we use Lebanon—the most ethically charged advertising environment within MENA—as an illustrative context for our study. Results confirm the multi-faceted and pluralistic nature of ad ethics as comprising a number of dimensional themes already salient in the existing literature but in addition, we also find evidence for a bipolar relationship between individual themes. The specific pattern of inductively derived relationships is culturally bound. Implications of the findings are discussed, followed by limitations of the study and recommendations for further research
Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV
Peer reviewe
Hong-Ou-Mandel interference with a single atom
The Hong-Ou-Mandel (HOM) effect is widely regarded as the quintessential quantum interference phenomenon in optics. In this work we examine how nonlinearity can smear statistical photon bunching in the HOM interferometer. We model both the nonlinearity and a balanced beam splitter with a single two-level system and calculate a finite probability of anti-bunching arising in this geometry. We thus argue that the presence of such nonlinearity would reduce the visibility in the standard HOM setup, offering some explanation for the diminution of the HOM visibility observed in many experiments. We use the same model to show that the nonlinearity affects a resonant two-photon propagation through a two-level impurity in a waveguide due to a " weak photon blockade" caused by the impossibility of double-occupancy and argue that this effect might be stronger for multi-photon propagation
Two decades of neuroscience publication trends in Africa.
Neuroscience research in Africa remains sparse. Devising new policies to boost Africa's neuroscience landscape is imperative, but these must be based on accurate data on research outputs which is largely lacking. Such data must reflect the heterogeneity of research environments across the continent's 54 countries. Here, we analyse neuroscience publications affiliated with African institutions between 1996 and 2017. Of 12,326 PubMed indexed publications, 5,219 show clear evidence that the work was performed in Africa and led by African-based researchers - on average ~5 per country and year. From here, we extract information on journals and citations, funding, international coauthorships and techniques used. For reference, we also extract the same metrics from 220 randomly selected publications each from the UK, USA, Australia, Japan and Brazil. Our dataset provides insights into the current state of African neuroscience research in a global context
Standardized reporting of monoclonal immunoglobulin-associated renal diseases: recommendations from a Mayo Clinic/Renal Pathology Society Working Group
- …
