305 research outputs found

    Impact of corpus callosum fiber tract crossing on polarimetric images of human brain histological sections: ex vivo studies in transmission configuration.

    Get PDF
    SIGNIFICANCE Imaging Mueller polarimetry is capable to trace in-plane orientation of brain fiber tracts by detecting the optical anisotropy of white matter of healthy brain. Brain tumor cells grow chaotically and destroy this anisotropy. Hence, the drop in scalar retardance values and randomization of the azimuth of the optical axis could serve as the optical marker for brain tumor zone delineation. AIM The presence of underlying crossing fibers can also affect the values of scalar retardance and the azimuth of the optical axis. We studied and analyzed the impact of fiber crossing on the polarimetric images of thin histological sections of brain corpus callosum. APPROACH We used the transmission Mueller microscope for imaging of two-layered stacks of thin sections of corpus callosum tissue to mimic the overlapping brain fiber tracts with different fiber orientations. The decomposition of the measured Mueller matrices was performed with differential and Lu-Chipman algorithms and completed by the statistical analysis of the maps of scalar retardance, azimuth of the optical axis, and depolarization. RESULTS Our results indicate the sensitivity of Mueller polarimetry to different spatial arrangement of brain fiber tracts as seen in the maps of scalar retardance and azimuth of optical axis of two-layered stacks of corpus callosum sections The depolarization varies slightly () with the orientation of the optical axes in both corpus callosum stripes, but its value increases by 2.5 to 3 times with the stack thickness. CONCLUSIONS The crossing brain fiber tracts measured in transmission induce the drop in values of scalar retardance and randomization of the azimuth of the optical axis at optical path length of . It suggests that the presence of nerve fibers crossing within the depth of few microns will be also detected in polarimetric maps of brain white matter measured in reflection configuration

    State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime

    Full text link
    Recently, macroscopic mechanical oscillators have been coaxed into a regime of quantum behavior, by direct refrigeration [1] or a combination of refrigeration and laser-like cooling [2, 3]. This exciting result has encouraged notions that mechanical oscillators may perform useful functions in the processing of quantum information with superconducting circuits [1, 4-7], either by serving as a quantum memory for the ephemeral state of a microwave field or by providing a quantum interface between otherwise incompatible systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode of a microwave field to and from a mechanical oscillator has not been demonstrated owing to the inability to agilely turn on and off the interaction between microwave electricity and mechanical motion. Here we demonstrate that the state of an itinerant microwave field can be coherently transferred into, stored in, and retrieved from a mechanical oscillator with amplitudes at the single quanta level. Crucially, the time to capture and to retrieve the microwave state is shorter than the quantum state lifetime of the mechanical oscillator. In this quantum regime, the mechanical oscillator can both store and transduce quantum information

    Gene expression drives the evolution of dominance.

    Get PDF
    Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels

    Quantum optical memory protocols in atomic ensembles

    Full text link
    We review a series of quantum memory protocols designed to store the quantum information carried by light into atomic ensembles. In particular, we show how a simple semiclassical formalism allows to gain insight into various memory protocols and to highlight strong analogies between them. These analogies naturally lead to a classification of light storage protocols into two categories, namely photon echo and slow-light memories. We focus on the storage and retrieval dynamics as a key step to map the optical information into the atomic excitation. We finally review various criteria adapted for both continuous variables and photon-counting measurement techniques to certify the quantum nature of these memory protocols

    Optical Magnetometry

    Get PDF
    Some of the most sensitive methods of measuring magnetic fields utilize interactions of resonant light with atomic vapor. Recent developments in this vibrant field are improving magnetometers in many traditional areas such as measurement of geomagnetic anomalies and magnetic fields in space, and are opening the door to new ones, including, dynamical measurements of bio-magnetic fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic

    Organic electrode coatings for next-generation neural interfaces

    Get PDF
    Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes

    Patterns of polymorphism and selection in the subgenomes of the allopolyploid Arabidopsis kamchatica

    Get PDF
    Genome duplication is widespread in wild and crop plants. However, little is known about genome-wide selection in polyploids due to the complexity of duplicated genomes. In polyploids, the patterns of purifying selection and adaptive substitutions may be affected by masking owing to duplicated genes or homeologs as well as effective population size. Here, we resequence 25 accessions of the allotetraploid Arabidopsis kamchatica, which is derived from the diploid species A. halleri and A. lyrata. We observe a reduction in purifying selection compared with the parental species. Interestingly, proportions of adaptive non-synonymous substitutions are significantly positive in contrast to most plant species. A recurrent pattern observed in both frequency and divergence–diversity neutrality tests is that the genome-wide distributions of both subgenomes are similar, but the correlation between homeologous pairs is low. This may increase the opportunity of different evolutionary trajectories such as in the HMA4 gene involved in heavy metal hyperaccumulation

    Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    Get PDF
    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures

    Association of Variants at UMOD with Chronic Kidney Disease and Kidney Stones—Role of Age and Comorbid Diseases

    Get PDF
    Chronic kidney disease (CKD) is a worldwide public health problem that is associated with substantial morbidity and mortality. To search for sequence variants that associate with CKD, we conducted a genome-wide association study (GWAS) that included a total of 3,203 Icelandic cases and 38,782 controls. We observed an association between CKD and a variant with 80% population frequency, rs4293393-T, positioned next to the UMOD gene (GeneID: 7369) on chromosome 16p12 (OR = 1.25, P = 4.1×10−10). This gene encodes uromodulin (Tamm-Horsfall protein), the most abundant protein in mammalian urine. The variant also associates significantly with serum creatinine concentration (SCr) in Icelandic subjects (N = 24,635, P = 1.3×10−23) but not in a smaller set of healthy Dutch controls (N = 1,819, P = 0.39). Our findings validate the association between the UMOD variant and both CKD and SCr recently discovered in a large GWAS. In the Icelandic dataset, we demonstrate that the effect on SCr increases substantially with both age (P = 3.0×10−17) and number of comorbid diseases (P = 0.008). The association with CKD is also stronger in the older age groups. These results suggest that the UMOD variant may influence the adaptation of the kidney to age-related risk factors of kidney disease such as hypertension and diabetes. The variant also associates with serum urea (P = 1.0×10−6), uric acid (P = 0.0064), and suggestively with gout. In contrast to CKD, the UMOD variant confers protection against kidney stones when studied in 3,617 Icelandic and Dutch kidney stone cases and 43,201 controls (OR = 0.88, P = 5.7×10−5)

    Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning

    Get PDF
    Optoelectronic terahertz modulators, operated by actively tuning metamaterial, plasmonic resonator structures, have helped to unlock a myriad of terahertz applications, ranging from spectroscopy and imaging to communications. At the same time, due to the inherently versatile dispersion properties of metamaterials, they offer unique platforms for studying intriguing phenomena such as negative refractive index and slow light. Active resonance frequency tuning of a metamaterial working in the terahertz regime is achieved by integrating metal-coupled resonator arrays with electrically tunable graphene. This metamaterial device exploits coupled plasmonic resonators to exhibit an electromagnetically induced transparency analog, resulting in the splitting of the resonance into coupled hybrid optical modes. By variably dampening one of the resonators using graphene, the coupling condition is electrically modulated and continuous tuning of the metamaterial resonance frequency is achieved. This device, operating at room temperature, can readily be implemented as a fast, optoelectronic, tunable band pass/reject filter with a tuning range of ≈100 GHz operating at 1.5 THz. The reconfigurable dispersion properties of this device can also be implemented for modulation of the group delay for slow light applications
    corecore