144 research outputs found

    Facilitators of HCV treatment adherence among people who inject drugs: a systematic qualitative review and implications for scale up of direct acting antivirals

    Get PDF
    Abstract Background While the public health benefits of new HCV treatments depend on treatment adherence, particularly among people who inject drugs (PWID), several social and medical factors can jeopardize treatment adherence. The aim of this study is to examine the qualitative literature on facilitators to HCV treatment adherence among PWID. Methods We searched six databases to identify qualitative research studies on HCV treatment adherence facilitators among PWID. Two reviewers independently extracted and analyzed data using PRISMA guidelines and the CASP tool to evaluate study quality. Results From ten studies representing data from 525 participants, three major themes emerged across studies: logistical facilitators within health systems enhanced HCV treatment adherence, positive social interactions between PWID and staff provided positive feedback during treatment, and HCV treatment may complicate the addiction recovery process. Conclusions Although PWID face several barriers to adherence, we identified treatment adherence facilitators that could be incorporated into clinical practice

    Emerging Promise of Computational Techniques in Anti-Cancer Research: At a Glance

    Full text link
    Research on the immune system and cancer has led to the development of new medicines that enable the former to attack cancer cells. Drugs that specifically target and destroy cancer cells are on the horizon; there are also drugs that use specific signals to stop cancer cells multiplying. Machine learning algorithms can significantly support and increase the rate of research on complicated diseases to help find new remedies. One area of medical study that could greatly benefit from machine learning algorithms is the exploration of cancer genomes and the discovery of the best treatment protocols for different subtypes of the disease. However, developing a new drug is time-consuming, complicated, dangerous, and costly. Traditional drug production can take up to 15 years, costing over USD 1 billion. Therefore, computer-aided drug design (CADD) has emerged as a powerful and promising technology to develop quicker, cheaper, and more efficient designs. Many new technologies and methods have been introduced to enhance drug development productivity and analytical methodologies, and they have become a crucial part of many drug discovery programs; many scanning programs, for example, use ligand screening and structural virtual screening techniques from hit detection to optimization. In this review, we examined various types of computational methods focusing on anticancer drugs. Machine-based learning in basic and translational cancer research that could reach new levels of personalized medicine marked by speedy and advanced data analysis is still beyond reach. Ending cancer as we know it means ensuring that every patient has access to safe and effective therapies. Recent developments in computational drug discovery technologies have had a large and remarkable impact on the design of anticancer drugs and have also yielded useful insights into the field of cancer therapy. With an emphasis on anticancer medications, we covered the various components of computer-aided drug development in this paper. Transcriptomics, toxicogenomics, functional genomics, and biological networks are only a few examples of the bioinformatics techniques used to forecast anticancer medications and treatment combinations based on multi-omics data. We believe that a general review of the databases that are now available and the computational techniques used today will be beneficial for the creation of new cancer treatment approaches.</jats:p

    Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS)

    Get PDF
    Numerical simulations of sequences of earthquakes and aseismic slip (SEAS) have made great progress over past decades to address important questions in earthquake physics. However, significant challenges in SEAS modeling remain in resolving multiscale interactions between earthquake nucleation, dynamic rupture, and aseismic slip, and understanding physical factors controlling observables such as seismicity and ground deformation. The increasing complexity of SEAS modeling calls for extensive efforts to verify codes and advance these simulations with rigor, reproducibility, and broadened impact. In 2018, we initiated a community code‐verification exercise for SEAS simulations, supported by the Southern California Earthquake Center. Here, we report the findings from our first two benchmark problems (BP1 and BP2), designed to verify different computational methods in solving a mathematically well‐defined, basic faulting problem. We consider a 2D antiplane problem, with a 1D planar vertical strike‐slip fault obeying rate‐and‐state friction, embedded in a 2D homogeneous, linear elastic half‐space. Sequences of quasi‐dynamic earthquakes with periodic occurrences (BP1) or bimodal sizes (BP2) and their interactions with aseismic slip are simulated. The comparison of results from 11 groups using different numerical methods show excellent agreements in long‐term and coseismic fault behavior. In BP1, we found that truncated domain boundaries influence interseismic stressing, earthquake recurrence, and coseismic rupture, and that model agreement is only achieved with sufficiently large domain sizes. In BP2, we found that complexity of fault behavior depends on how well physical length scales related to spontaneous nucleation and rupture propagation are resolved. Poor numerical resolution can result in artificial complexity, impacting simulation results that are of potential interest for characterizing seismic hazard such as earthquake size distributions, moment release, and recurrence times. These results inform the development of more advanced SEAS models, contributing to our further understanding of earthquake system dynamics

    Delayed Onset of a Daytime Nap Facilitates Retention of Declarative Memory

    Get PDF
    BACKGROUND: Learning followed by a period of sleep, even as little as a nap, promotes memory consolidation. It is now generally recognized that sleep facilitates the stabilization of information acquired prior to sleep. However, the temporal nature of the effect of sleep on retention of declarative memory is yet to be understood. We examined the impact of a delayed nap onset on the recognition of neutral pictorial stimuli with an added spatial component. METHODOLOGY/PRINCIPAL FINDINGS: Participants completed an initial study session involving 150 neutral pictures of people, places, and objects. Immediately following the picture presentation, participants were asked to make recognition judgments on a subset of "old", previously seen, pictures versus intermixed "new" pictures. Participants were then divided into one of four groups who either took a 90-minute nap immediately, 2 hours, or 4 hours after learning, or remained awake for the duration of the experiment. 6 hours after initial learning, participants were again tested on the remaining "old" pictures, with "new" pictures intermixed. CONCLUSIONS/SIGNIFICANCE: Interestingly, we found a stabilizing benefit of sleep on the memory trace reflected as a significant negative correlation between the average time elapsed before napping and decline in performance from test to retest (p = .001). We found a significant interaction between the groups and their performance from test to retest (p = .010), with the 4-hour delay group performing significantly better than both those who slept immediately and those who remained awake (p = .044, p = .010, respectively). Analysis of sleep data revealed a significant positive correlation between amount of slow wave sleep (SWS) achieved and length of the delay before sleep onset (p = .048). The findings add to the understanding of memory processing in humans, suggesting that factors such as waking processing and homeostatic increases in need for sleep over time modulate the importance of sleep to consolidation of neutral declarative memories

    UP States Protect Ongoing Cortical Activity from Thalamic Inputs

    Get PDF
    Cortical neurons in vitro and in vivo fluctuate spontaneously between two stable membrane potentials: a depolarized UP state and a hyperpolarized DOWN state. UP states temporally correspond with multineuronal firing sequences which may be important for information processing. To examine how thalamic inputs interact with ongoing cortical UP state activity, we used calcium imaging and targeted whole-cell recordings of activated neurons in thalamocortical slices of mouse somatosensory cortex. Whereas thalamic stimulation during DOWN states generated multineuronal, synchronized UP states, identical stimulation during UP states had no effect on the subthreshold membrane dynamics of the vast majority of cells or on ongoing multineuronal temporal patterns. Both thalamocortical and corticocortical PSPs were significantly reduced and neuronal input resistance was significantly decreased during cortical UP states – mechanistically consistent with UP state insensitivity. Our results demonstrate that cortical dynamics during UP states are insensitive to thalamic inputs

    Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The yield of charged particles associated with high-pTp_{\rm T} trigger particles (8<pT<158 < p_{\rm T} < 15 GeV/cc) is measured with the ALICE detector in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV relative to proton-proton collisions at the same energy. The conditional per-trigger yields are extracted from the narrow jet-like correlation peaks in azimuthal di-hadron correlations. In the 5% most central collisions, we observe that the yield of associated charged particles with transverse momenta pT>3p_{\rm T}> 3 GeV/cc on the away-side drops to about 60% of that observed in pp collisions, while on the near-side a moderate enhancement of 20-30% is found.Comment: 15 pages, 2 captioned figures, 1 table, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/350

    Materials for Diabetes Therapeutics

    Get PDF
    This review is focused on the materials and methods used to fabricate closed-loop systems for type 1 diabetes therapy. Herein, we give a brief overview of current methods used for patient care and discuss two types of possible treatments and the materials used for these therapies–(i) artificial pancreases, comprised of insulin producing cells embedded in a polymeric biomaterial, and (ii) totally synthetic pancreases formulated by integrating continuous glucose monitors with controlled insulin release through degradable polymers and glucose-responsive polymer systems. Both the artificial and the completely synthetic pancreas have two major design requirements: the device must be both biocompatible and be permeable to small molecules and proteins, such as insulin. Several polymers and fabrication methods of artificial pancreases are discussed: microencapsulation, conformal coatings, and planar sheets. We also review the two components of a completely synthetic pancreas. Several types of glucose sensing systems (including materials used for electrochemical, optical, and chemical sensing platforms) are discussed, in addition to various polymer-based release systems (including ethylene-vinyl acetate, polyanhydrides, and phenylboronic acid containing hydrogels).Juvenile Diabetes Research Foundation International (17-2007-1063)Leona M. and Harry B. Helmsley Charitable Trust (09PG-T1D027)United States. National Institutes of Health (F32 EB011580-01

    Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS)

    Get PDF
    Numerical simulations of sequences of earthquakes and aseismic slip (SEAS) have made great progress over past decades to address important questions in earthquake physics. However, significant challenges in SEAS modeling remain in resolving multiscale interactions between earthquake nucleation, dynamic rupture, and aseismic slip, and understanding physical factors controlling observables such as seismicity and ground deformation. The increasing complexity of SEAS modeling calls for extensive efforts to verify codes and advance these simulations with rigor, reproducibility, and broadened impact. In 2018, we initiated a community code‐verification exercise for SEAS simulations, supported by the Southern California Earthquake Center. Here, we report the findings from our first two benchmark problems (BP1 and BP2), designed to verify different computational methods in solving a mathematically well‐defined, basic faulting problem. We consider a 2D antiplane problem, with a 1D planar vertical strike‐slip fault obeying rate‐and‐state friction, embedded in a 2D homogeneous, linear elastic half‐space. Sequences of quasi‐dynamic earthquakes with periodic occurrences (BP1) or bimodal sizes (BP2) and their interactions with aseismic slip are simulated. The comparison of results from 11 groups using different numerical methods show excellent agreements in long‐term and coseismic fault behavior. In BP1, we found that truncated domain boundaries influence interseismic stressing, earthquake recurrence, and coseismic rupture, and that model agreement is only achieved with sufficiently large domain sizes. In BP2, we found that complexity of fault behavior depends on how well physical length scales related to spontaneous nucleation and rupture propagation are resolved. Poor numerical resolution can result in artificial complexity, impacting simulation results that are of potential interest for characterizing seismic hazard such as earthquake size distributions, moment release, and recurrence times. These results inform the development of more advanced SEAS models, contributing to our further understanding of earthquake system dynamics

    Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates

    Get PDF
    The foreign body response is an immune-mediated reaction that can lead to the failure of implanted medical devices and discomfort for the recipient. There is a critical need for biomaterials that overcome this key challenge in the development of medical devices. Here we use a combinatorial approach for covalent chemical modification to generate a large library of variants of one of the most widely used hydrogel biomaterials, alginate. We evaluated the materials in vivo and identified three triazole-containing analogs that substantially reduce foreign body reactions in both rodents and, for at least 6 months, in non-human primates. The distribution of the triazole modification creates a unique hydrogel surface that inhibits recognition by macrophages and fibrous deposition. In addition to the utility of the compounds reported here, our approach may enable the discovery of other materials that mitigate the foreign body response.Leona M. and Harry B. Helmsley Charitable Trust (3-SRA-2014-285-M-R)United States. National Institutes of Health (EB000244)United States. National Institutes of Health (EB000351)United States. National Institutes of Health (DE013023)United States. National Institutes of Health (CA151884)United States. National Institutes of Health (P41EB015871-27)National Cancer Institute (U.S.) (P30-CA14051
    corecore