67 research outputs found

    Spearmint Extract Improves Working Memory in Men and Women with Age-Associated Memory Impairment

    Get PDF
    This is the final version of the article. Available from Mary Ann Liebert via the DOI in this record.OBJECTIVE: The purpose of this study was to investigate the effects of supplementation with a spearmint (Mentha spicata L.) extract, high in polyphenols including rosmarinic acid, on cognitive performance, sleep, and mood in individuals with age-associated memory impairment (AAMI). DESIGN: Subjects with AAMI (N = 90; 67% female; age = 59.4 ± 0.6 years) were randomly assigned (n = 30/group) to consume 900, 600, or 0 mg/day (two capsules, once daily) spearmint extract for 90 days, in this double-blind, placebo-controlled trial. Assessments were completed for cognition (days 0, 45, and 90), sleep (days 0 and 90), and mood (days 0 and 90) by using the Cognitive Drug Research (CDR) System™, Leeds Sleep Evaluation Questionnaire (LSEQ), and Profile of Mood States (POMS™), respectively. RESULTS: Quality of working memory and spatial working memory accuracy improved after supplementation with 900 mg/day spearmint extract by 15% (p = 0.0469) and 9% (p = 0.0456), respectively, versus placebo. Subjects consuming 900 mg/day spearmint extract reported improvement in their ability to fall asleep, relative to subjects consuming placebo (p = 0.0046). Overall treatment effects were evident for vigor-activity (p = 0.0399), total mood disturbance (p = 0.0374), and alertness and behavior following wakefulness (p = 0.0415), with trends observed for improvements after spearmint supplementation relative to placebo. CONCLUSIONS: These results suggest that the distinct spearmint extract may be a beneficial nutritional intervention for cognitive health in older subjects with AAMI.Kemin Foods, L.C., funded this study

    Phagocytosis of Cholesteryl Ester Is Amplified in Diabetic Mouse Macrophages and Is Largely Mediated by CD36 and SR-A

    Get PDF
    Type 2 diabetes (T2D) is associated with accelerated atherosclerosis, which accounts for approximately 75% of all diabetes-related deaths. Here we investigate the link between diabetes and macrophage cholesteryl ester accumulation. When diabetic (db/db) mice are given cholesteryl ester intraperitoneally (IP), peritoneal macrophages (PerMΦs) recovered from these animals showed a 58% increase in intracellular cholesteryl ester accumulation over PerMΦs from heterozygote control (db/+) mice. Notably, PerMΦ fluid-phase endocytosis and large particle phagocytosis was equivalent in db/+and db/db mice. However, IP administration of CD36 and SR-A blocking antibodies led to 37% and 25% reductions in cholesteryl ester accumulation in PerMΦ. Finally, in order to determine if these scavenger receptors (SRs) were part of the mechanism responsible for the increased accumulation of cholesteryl esters observed in the diabetic mouse macrophages, receptor expression was quantified by flow cytometry. Importantly, db/db PerMΦs showed a 43% increase in CD36 expression and an 80% increase in SR-A expression. Taken together, these data indicate that direct cholesteryl ester accumulation in mouse macrophages is mediated by CD36 and SR-A, and the magnitude of accumulation is increased in db/db macrophages due to increased scavenger receptor expression

    Substrate cycling between de novo lipogenesis and lipid oxidation: a thermogenic mechanism against skeletal muscle lipotoxicity and glucolipotoxicity

    Get PDF
    Life is a combustion, but how the major fuel substrates that sustain human life compete and interact with each other for combustion has been at the epicenter of research into the pathogenesis of insulin resistance ever since Randle proposed a 'glucose-fatty acid cycle' in 1963. Since then, several features of a mutual interaction that is characterized by both reciprocality and dependency between glucose and lipid metabolism have been unravelled, namely: 1. the inhibitory effects of elevated concentrations of fatty acids on glucose oxidation (via inactivation of mitochondrial pyruvate dehydrogenase or via desensitization of insulin-mediated glucose transport), 2. the inhibitory effects of elevated concentrations of glucose on fatty acid oxidation (via malonyl-CoA regulation of fatty acid entry into the mitochondria), and more recently 3. the stimulatory effects of elevated concentrations of glucose on de novo lipogenesis, that is, synthesis of lipids from glucose (via SREBP1c regulation of glycolytic and lipogenic enzymes). This paper first revisits the physiological significance of these mutual interactions between glucose and lipids in skeletal muscle pertaining to both blood glucose and intramyocellular lipid homeostasis. It then concentrates upon emerging evidence, from calorimetric studies investigating the direct effect of leptin on thermogenesis in intact skeletal muscle, of yet another feature of the mutual interaction between glucose and lipid oxidation: that of substrate cycling between de novo lipogenesis and lipid oxidation. It is proposed that this energy-dissipating substrate cycling that links glucose and lipid metabolism to thermogenesis could function as a 'fine-tuning' mechanism that regulates intramyocellular lipid homeostasis, and hence contributes to the protection of skeletal muscle against lipotoxicity

    Leptin Replacement Improves Cognitive Development

    Get PDF
    Leptin changes brain structure, neuron excitability and synaptic plasticity. It also regulates the development and function of feeding circuits. However, the effects of leptin on neurocognitive development are unknown.To evaluate the effect of leptin on neurocognitive development.A 5-year-old boy with a nonconservative missense leptin gene mutation (Cys-to-Thr in codon 105) was treated with recombinant methionyl human leptin (r-metHuLeptin) at physiologic replacement doses of 0.03 mg/kg/day. Cognitive development was assessed using the Differential Ability Scales (DAS), a measure of general verbal and nonverbal functioning; and selected subtests from the NEPSY, a measure of neuropsychological functioning in children.Prior to treatment, the patient was morbidly obese, hypertensive, dyslipidemic, and hyperinsulinemic. Baseline neurocognitive tests revealed slower than expected rates of development (developmental age lower than chronological age) in a majority of the areas assessed. After two years, substantial increases in the rates of development in most neurocognitive domains were apparent, with some skills at or exceeding expectations based on chronological age. We also observed marked weight loss and resolution of hypertension, dyslipidemia and hyperinsulinemia.We concluded that replacement with r-metHuLeptin is associated with weight loss and changes in rates of development in many neurocognitive domains, which lends support to the hypothesis that, in addition to its role in metabolism, leptin may have a cognitive enhancing role in the developing central nervous system.ClinicalTrials.gov NCT00659828

    The Neuropeptide Allatostatin A Regulates Metabolism and Feeding Decisions in Drosophila

    Get PDF
    Coordinating metabolism and feeding is important to avoid obesity and metabolic diseases, yet the underlying mechanisms, balancing nutrient intake and metabolic expenditure, are poorly understood. Several mechanisms controlling these processes are conserved in Drosophila, where homeostasis and energy mobilization are regulated by the glucagon-related adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). Here, we provide evidence that the Drosophila neuropeptide Allatostatin A (AstA) regulates AKH and DILP signaling. The AstA receptor gene, Dar-2, is expressed in both the insulin and AKH producing cells. Silencing of Dar-2 in these cells results in changes in gene expression and physiology associated with reduced DILP and AKH signaling and animals lacking AstA accumulate high lipid levels. This suggests that AstA is regulating the balance between DILP and AKH, believed to be important for the maintenance of nutrient homeostasis in response to changing ratios of dietary sugar and protein. Furthermore, AstA and Dar-2 are regulated differentially by dietary carbohydrates and protein and AstA-neuronal activity modulates feeding choices between these types of nutrients. Our results suggest that AstA is involved in assigning value to these nutrients to coordinate metabolic and feeding decisions, responses that are important to balance food intake according to metabolic needs

    Leptin Administration Favors Muscle Mass Accretion by Decreasing FoxO3a and Increasing PGC-1α in ob/ob Mice

    Get PDF
    Absence of leptin has been associated with reduced skeletal muscle mass in leptin-deficient ob/ob mice. The aim of our study was to examine the effect of leptin on the catabolic and anabolic pathways regulating muscle mass. Gastrocnemius, extensor digitorum longus and soleus muscle mass as well as fiber size were significantly lower in ob/ob mice compared to wild type littermates, being significantly increased by leptin administration (P<0.001). This effect was associated with an inactivation of the muscle atrophy-related transcription factor forkhead box class O3 (FoxO3a) (P<0.05), and with a decrease in the protein expression levels of the E3 ubiquitin-ligases muscle atrophy F-box (MAFbx) (P<0.05) and muscle RING finger 1 (MuRF1) (P<0.05). Moreover, leptin increased (P<0.01) protein expression levels of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a regulator of muscle fiber type, and decreased (P<0.05) myostatin protein, a negative regulator of muscle growth. Leptin administration also activated (P<0.01) the regulators of cell cycle progression proliferating cell nuclear antigen (PCNA) and cyclin D1, and increased (P<0.01) myofibrillar protein troponin T. The present study provides evidence that leptin treatment may increase muscle mass of ob/ob mice by inhibiting myofibrillar protein degradation as well as enhancing muscle cell proliferation

    Site-specific seeding using multi-sensor and data fusion techniques : a review

    No full text
    Site-specific seeding (SSS) is a precision agricultural (PA) practice aiming at optimizing seeding rate and depth, depending on the within field variability in soil fertility and yield potential. Unlike other site-specific applications, SSS was not adopted sufficiently by farmers due to some technological and practical challenges that need to be overcome. Success of site-specific application strongly depends on the accuracy of measurement of key parameters in the system, modeling and delineation of management zone maps, accurate recommendations and finally the right choice of variable rate (VR) technologies and their integrations. The current study reviews available principles and technologies for both map-based and senor-based SSS. It covers the background of crop and soil quality indicators (SQI), various soil and crop sensor technologies and recommendation approaches of map-based and sensor-based SSS applications. It also discusses the potential of socio-economic benefits of SSS against uniform seeding. The current review proposes prospective future technology synthesis for implementation of SSS in practice. A multi-sensor data fusion system, integrating proper sensor combinations, is suggested as an essential approach for putting SSS into practice

    The creatine kinase system and pleiotropic effects of creatine

    Get PDF
    The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans
    corecore