95 research outputs found

    Measurement of D*±, D± and Ds± meson production cross sections in pp collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    The production of D∗±, D± and D±s charmed mesons has been measured with the ATLAS detector in pp collisions at √s= 7 TeV at the LHC, using data corresponding to an integrated luminosity of 280 nb−1. The charmed mesons have been reconstructed in the range of transverse momentum 3.5 <pT(D) <100 GeV and pseudorapidity |η(D)| <2.1. The differential cross sections as a function of transverse momentum and pseudorapidity were measured for D∗± and D± production. The next-to-leading-order QCD predictions are consistent with the data in the visible kinematic region within the large theoretical uncertainties. Using the visible D cross sections and an extrapolation to the full kinematic phase space, the strangeness-suppression factor in charm fragmentation, the fraction of charged non-strange D mesons produced in a vector state, and the total cross section of charm production at √s= 7 TeV were derived

    Search for the Xb and other hidden-beauty states in the π+π−ϒ(1S) channel at ATLAS

    Get PDF
    This Letter presents a search for a hidden-beauty counterpart of the X(3872) in the mass ranges of 10.05–10.31 GeV and 10.40–11.00 GeV, in the channel Xb→π+π−ϒ(1S)(→μ+μ−), using 16.2 fb−1 of pp   collision data collected by the ATLAS detector at the LHC. No evidence for new narrow states is found, and upper limits are set on the product of the Xb cross section and branching fraction, relative to those of the ϒ(2S), at the 95% confidence level using the CLS approach. These limits range from 0.8% to 4.0%, depending on mass. For masses above 10.1 GeV, the expected upper limits from this analysis are the most restrictive to date. Searches for production of the ϒ(13DJ), , and states also reveal no significant signals

    First measurement of Ωc0 production in pp collisions at s=13 TeV

    Get PDF
    The inclusive production of the charm–strange baryon 0 c is measured for the first time via its hadronic √ decay into −π+ at midrapidity (|y| &lt;0.5) in proton–proton (pp) collisions at the centre-of-mass energy s =13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 &lt; pT &lt; 12 GeV/c. The pT dependence of the 0 c-baryon production relative to the prompt D0-meson and to the prompt 0 c-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of 0 c and prompt + c baryons multiplied by the −π+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e− collisions

    Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb–Pb and Xe–Xe collisions

    Get PDF
    Measurements of the elliptic flow coefficient relative to the collision plane defined by the spectator neutrons v2{ SP} in collisions of Pb ions at center-of-mass energy per nucleon–nucleon pair √ 2.76 TeV and Xe ions at √ sNN = sNN =5.44 TeV are reported. The results are presented for charged particles produced at midrapidity as a function of centrality and transverse momentum for the 5–70% and 0.2–6 GeV/c ranges, respectively. The ratio between v2{ SP} and the elliptic flow coefficient relative to the participant plane v2{4}, estimated using four-particle correlations, deviates by up to 20% from unity depending on centrality. This observation differs strongly from the magnitude of the corresponding eccentricity ratios predicted by the TRENTo and the elliptic power models of initial state fluctuations that are tuned to describe the participant plane anisotropies. The differences can be interpreted as a decorrelation of the neutron spectator plane and the reaction plane because of fragmentation of the remnants from the colliding nuclei, which points to an incompleteness of current models describing the initial state fluctuations. A significant transverse momentum dependence of the ratio v2{ SP}/v2{4} is observed in all but the most central collisions, which may help to understand whether momentum anisotropies at low and intermediate transverse momentum have a common origin in initial state f luctuations. The ratios of v2{ SP} and v2{4} to the corresponding initial state eccentricities for Xe–Xe and Pb–Pb collisions at similar initial entropy density show a difference of (7.0 ±0.9)%with an additional variation of +1.8% when including RHIC data in the TRENTo parameter extraction. These observations provide new experimental constraints for viscous effects in the hydrodynamic modeling of the expanding quark–gluon plasma produced in heavy-ion collisions at the LHC

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Production of pions, kaons, and protons as a function of the relative transverse activity classifier in pp collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceThe production of π±^{±}, K±^{±}, and (p)p \left(\overline{\textrm{p}}\right)\textrm{p} is measured in pp collisions at s \sqrt{s} = 13 TeV in different topological regions of the events. Particle transverse momentum (pT_{T}) spectra are measured in the “toward”, “transverse”, and “away” angular regions defined with respect to the direction of the leading particle in the event. While the toward and away regions contain the fragmentation products of the near-side and away-side jets, respectively, the transverse region is dominated by particles from the Underlying Event (UE). The relative transverse activity classifier, RT_{T} = NT_{T}/〈NT_{T}〉, is used to group events according to their UE activity, where NT_{T} is the measured charged-particle multiplicity per event in the transverse region and 〈NT_{T}〉 is the mean value over all the analysed events. The first measurements of identified particle pT_{T} spectra as a function of RT_{T} in the three topological regions are reported. It is found that the yield of high transverse momentum particles relative to the RT_{T}-integrated measurement decreases with increasing RT_{T} in both the toward and the away regions, indicating that the softer UE dominates particle production as RT_{T} increases and validating that RT_{T} can be used to control the magnitude of the UE. Conversely, the spectral shapes in the transverse region harden significantly with increasing RT_{T}. This hardening follows a mass ordering, being more significant for heavier particles. Finally, it is observed that the pT_{T}-differential particle ratios \left(\textrm{p}+\overline{\textrm{p}}\right)/\left({\uppi}^{+}+{\uppi}^{-}\right) and (K+^{+} + K^{−})/(π+^{+} + π^{−}) in the low UE limit (RT_{T} → 0) approach expectations from Monte Carlo generators such as PYTHIA 8 with Monash 2013 tune and EPOS LHC, where the jet-fragmentation models have been tuned to reproduce e+^{+}e^{−} results.[graphic not available: see fulltext

    Anisotropic flow and flow fluctuations of identified hadrons in Pb–Pb collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV

    Get PDF
    International audienceThe first measurements of elliptic flow of π±^{±}, K±^{±}, p+p \textrm{p}+\overline{\textrm{p}} , KS0 {\textrm{K}}_{\textrm{S}}^0 , Λ+Λ \Lambda +\overline{\Lambda} , ϕ, Ξ+Ξ+ {\Xi}^{-}+{\overline{\Xi}}^{+} , and Ω+Ω+ {\varOmega}^{-}+{\overline{\varOmega}}^{+} using multiparticle cumulants in Pb–Pb collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV are resented. Results obtained with two- (v2_{2}{2}) and four-particle cumulants (v2_{2}{4}) are shown as a function of transverse momentum, pT_{T}, for various collision centrality intervals. Combining the data for both v2_{2}{2} and v2_{2}{4} also allows us to report the first measurements of the mean elliptic flow, elliptic flow fluctuations, and relative elliptic flow fluctuations for various hadron species. These observables probe the event-by-event eccentricity fluctuations in the initial state and the contributions from the dynamic evolution of the expanding quark–gluon plasma. The characteristic features observed in previous pT_{T}-differential anisotropic flow measurements for identified hadrons with two-particle correlations, namely the mass ordering at low pT_{T} and the approximate scaling with the number of constituent quarks at intermediate pT_{T}, are similarly present in the four-particle correlations and the combinations of v2_{2}{2} and v2_{2}{4}. In addition, a particle species dependence of flow fluctuations is observed that could indicate a significant contribution from final state hadronic interactions. The comparison between experimental measurements and CoLBT model calculations, which combine the various physics processes of hydrodynamics, quark coalescence, and jet fragmentation, illustrates their importance over a wide pT_{T} range.[graphic not available: see fulltext

    Measurement of the non-prompt D-meson fraction as a function of multiplicity in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceThe fractions of non-prompt (i.e. originating from beauty-hadron decays) D0^{0} and D+^{+} mesons with respect to the inclusive yield are measured as a function of the charged-particle multiplicity in proton-proton collisions at a centre-of-mass energy of s \sqrt{s} = 13 TeV with the ALICE detector at the LHC. The results are reported in intervals of transverse momentum (pT_{T}) and integrated in the range 1 < pT_{T}< 24 GeV/c. The fraction of non-prompt D0^{0} and D+^{+} mesons is found to increase slightly as a function of pT_{T} in all the measured multiplicity intervals, while no significant dependence on the charged-particle multiplicity is observed. In order to investigate the production and hadronisation mechanisms of charm and beauty quarks, the results are compared to PYTHIA 8 as well as EPOS 3 and EPOS 4 Monte Carlo simulations, and to calculations based on the colour glass condensate including three-pomeron fusion.[graphic not available: see fulltext

    Azimuthal correlations of heavy-flavor hadron decay electrons with charged particles in pp and p–Pb collisions at sNN\pmb {\sqrt{s_{\mathrm{{NN}}}}} = 5.02 TeV

    Get PDF
    International audienceThe azimuthal (Δφ\Delta \varphi ) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p–Pb collisions at sNN=5.02\sqrt{s_{\mathrm{{NN}}}} = 5.02 TeV. Results are reported for electrons with transverse momentum 4<pT<16GeV/c4<p_{\textrm{T}}<16\textrm{GeV}/c and pseudorapidity η<0.6|\eta |<0.6. The associated charged particles are selected with transverse momentum 1<pT<7GeV/c1<p_{\textrm{T}}<7\textrm{GeV}/c, and relative pseudorapidity separation with the leading electron Δη<1|\Delta \eta | < 1. The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near- and away-side peaks, respectively. The results from p–Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The Δφ\Delta \varphi distribution and the peak observables in pp and p–Pb collisions are compared with calculations from various Monte Carlo event generators
    corecore