474 research outputs found

    Linh Hoang Honors Portfolio

    Get PDF
    Lihn Hoang\u27s honors portfolio captured in May 2019

    Physics-based simulations to predict the differential effects of motor control and musculoskeletal deficits on gait dysfunction in cerebral palsy : a retrospective case study

    Get PDF
    Physics-based simulations of walking have the theoretical potential to support clinical decision-making by predicting the functional outcome of treatments in terms of walking performance. Yet before using such simulations in clinical practice, their ability to identify the main treatment targets in specific patients needs to be demonstrated. In this study, we generated predictive simulations of walking with a medical imaging based neuro-musculoskeletal model of a child with cerebral palsy presenting crouch gait. We explored the influence of altered muscle-tendon properties, reduced neuromuscular control complexity, and spasticity on gait dysfunction in terms of joint kinematics, kinetics, muscle activity, and metabolic cost of transport. We modeled altered muscle-tendon properties by personalizing Hill-type muscle-tendon parameters based on data collected during functional movements, simpler neuromuscular control by reducing the number of independent muscle synergies, and spasticity through delayed muscle activity feedback from muscle force and force rate. Our simulations revealed that, in the presence of aberrant musculoskeletal geometries, altered muscle-tendon properties rather than reduced neuromuscular control complexity and spasticity were the primary cause of the crouch gait pattern observed for this child, which is in agreement with the clinical examination. These results suggest that muscle-tendon properties should be the primary target of interventions aiming to restore an upright gait pattern for this child. This suggestion is in line with the gait analysis following muscle-tendon property and bone deformity corrections. Future work should extend this single case analysis to more patients in order to validate the ability of our physics-based simulations to capture the gait patterns of individual patients pre- and post-treatment. Such validation would open the door for identifying targeted treatment strategies with the aim of designing optimized interventions for neuro-musculoskeletal disorders

    Automatic Computation of Feynman Diagrams

    Full text link
    Quantum corrections significantly influence the quantities observed in modern particle physics. The corresponding theoretical computations are usually quite lengthy which makes their automation mandatory. This review reports on the current status of automatic calculation of Feynman diagrams in particle physics. The most important theoretical techniques are introduced and their usefulness is demonstrated with the help of simple examples. A survey over frequently used programs and packages is provided, discussing their abilities and fields of applications. Subsequently, some powerful packages which have already been applied to important physical problems are described in more detail. The review closes with the discussion of a few typical applications for the automated computation of Feynman diagrams, addressing current physical questions like properties of the ZZ and Higgs boson, four-loop corrections to renormalization group functions and two-loop electroweak corrections.Comment: Latex, 62 pages. Typos corrected, references updated and some comments added. Vertical offset changed. The complete paper is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ttp98/ttp98-41/ or via www at http://www-ttp.physik.uni-karlsruhe.de/Preprints

    Cosmic-ray pitch-angle scattering in imbalanced mhd turbulence simulations

    Get PDF
    Pitch-angle scattering rates for cosmic-ray particles in magnetohydrodynamic (MHD) simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfven waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.Comment: 13 pages, 15 figures. Accepted by Ap

    Shared genome analyses of notable listeriosis outbreaks, highlighting the critical importance of epidemiological evidence, input datasets and interpretation criteria

    Get PDF
    The persuasiveness of genomic evidence has pressured scientific agencies to supplement or replace well-established methodologies to inform public health and food safety decision-making. This study of 52 epidemiologically defined Listeria monocytogenes isolates, collected between 1981 and 2011, including nine outbreaks, was undertaken (1) to characterize their phylogenetic relationship at finished genome-level resolution, (2) to elucidate the underlying genetic diversity within an endemic subtype, CC8, and (3) to re-evaluate the genetic relationship and epidemiology of a CC8-delimited outbreak in Canada in 2008. Genomes representing Canadian Listeria outbreaks between 1981 and 2010 were closed and manually annotated. Single nucleotide variants (SNVs) and horizontally acquired traits were used to generate phylogenomic models. Phylogenomic relationships were congruent with classical subtyping and epidemiology, except for CC8 outbreaks, wherein the distribution of SNV and prophages revealed multiple co-evolving lineages. Chronophyletic reconstruction of CC8 evolution indicates that prophage-related genetic changes among CC8 strains manifest as PFGE subtype reversions, obscuring the relationship between CC8 isolates, and complicating the public health interpretation of subtyping data, even at maximum genome resolution. The size of the shared genome interrogated did not change the genetic relationship measured between highly related isolates near the tips of the phylogenetic tree, illustrating the robustness of these approaches for routine public health applications where the focus is recent ancestry. The possibility exists for temporally and epidemiologically distinct events to appear related even at maximum genome resolution, highlighting the continued importance of epidemiological evidence

    Online Training and Self-assessment in the Histopathologic Classification of Endocervical Adenocarcinoma and Diagnosis of Pattern of Invasion: Evaluation of Participant Performance

    Get PDF
    Histopathologic classification of endocervical adenocarcinomas (EAC) has recently changed, with the new system based on human papillomavirus (HPV)-related morphologic features being incorporated into the 5th edition of the WHO Blue Book (Classification of Tumours of the Female Genital Tract). There has also been the introduction of a pattern-based classification system to assess invasion in HPV-associated (HPVA) endocervical adenocarcinomas that stratifies tumors into 3 groups with different prognoses. To facilitate the introduction of these changes into routine clinical practice, websites with training sets and test sets of scanned whole slide images were designed to improve diagnostic performance in histotype classification of endocervical adenocarcinoma based on the International Endocervical Adenocarcinoma Criteria and Classification (IECC) and assessment of Silva pattern of invasion in HPVA endocervical adenocarcinomas. We report on the diagnostic results of those who have participated thus far in these educational websites. Our goal was to identify areas where diagnostic performance was suboptimal and future educational efforts could be directed. There was very good ability to distinguish HPVA from HPV-independent adenocarcinomas within the WHO/IECC classification, with some challenges in the diagnosis of HPV-independent subtypes, especially mesonephric carcinoma. Diagnosis of HPVA subtypes was not consistent. For the Silva classification, the main challenge was related to distinction between pattern A and pattern B, with a tendency for participants to overdiagnose pattern B invasion. These observations can serve as the basis for more targeted efforts to improve diagnostic performance

    International incidence of childhood cancer, 2001-10: A population-based registry study

    Get PDF

    Antideuteron and antihelion production in root(s) = 130 GeV Au+Au collisions

    Full text link
    The first measurements of light antinucleus production in Au+Au collisions at RHIC are reported. The observed production rates for antideuterons and antihelions are much larger than in lower energy nucleus-nucleus collisions. A coalescence model analysis of the yields indicates that there is little or no increase in the antinucleon freeze-out volume compared to collisions at SPS energy. These analyses also indicate that the antihelion freeze-out volume is smaller than the antideuteron freeze-out volume.Comment: Submitted to Phys. Rev. Let

    Determination of the top-quark pole mass using tt̄ + 1-jet events collected with the ATLAS experiment in 7 TeV pp collisions

    Get PDF
    The normalized differential cross section for top-quark pair production in association with at least one jet is studied as a function of the inverse of the invariant mass of the tt̄ + 1-jet system. This distribution can be used for a precise determination of the top-quark mass since gluon radiation depends on the mass of the quarks. The experimental analysis is based on proton-proton collision data collected by the ATLAS detector at the LHC with a centre-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.6 fb−¹. The selected events were identified using the lepton+jets top-quark-pair decay channel, where lepton refers to either an electron or a muon. The observed distribution is compared to a theoretical prediction at next-to-leading-order accuracy in quantum chromodynamics using the pole-mass scheme. With this method, the measured value of the top-quark pole mass, mtpole, is: mtpole=173.7±1.5(stat.)±1.4(syst.)−0.5+1.0(theory)GeV. This result represents the most precise measurement of the top-quark pole mass to date
    corecore