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ABSTRACT

Pitch-angle scattering rates for cosmic-ray particles in magnetohydrodynamic (MHD) simulations
with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare
with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an ideal-
ized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion
coefficient. Additional simulations in evolving magnetic fields or static field configurations provide
evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence
with propagating Alfvén waves, but an effect of the spatial structure of electric fields in cross-helical
MHD turbulence.
Subject headings: diffusion — scattering — magnetohydrodynamics (MHD) — (ISM:) cosmic rays

1. INTRODUCTION

Both turbulence and magnetic fields are phenomena
which permeate essentially every subdiscipline of astro-
physics. Studying the combined effect of both phenom-
ena on fundamental processes such as the diffusion of
charged particles in the context of magnetohydrodynam-
ics is therefore a task of utmost importance for gaining
a better understanding of the universe.

The magnetohydrodynamic (MHD) turbulence of
many astrophysical systems exhibits high degrees of cross
helicity, which means that fluctuations of the bulk ve-
locity of the medium and of magnetic fields induced in
the plasma are strongly correlated. This property, which
is also known as Alfvénicity when referring to the solar
wind (Matthaeus et al. 2004) or as imbalanced turbu-
lence in the astrophysical community (Perez & Boldyrev
2009), has been measured in observations of the fast solar
wind (Marsch & Tu 1990) and is important upstream of
supernova remnant (SNR) shocks (Schlickeiser & Shalchi
2008) as well as a driving force of the dynamo effect in
accretion disks and young galaxies (Yoshizawa & Yokoi
1993; Brandenburg & Urpin 1998).

The rate at which MHD turbulence scatters the pitch-
angle of charged particles is a crucial parameter in many
of these settings, particularly for diffusive shock acceler-
ation in SNR shock fronts or measurements of velocity
statistics in the solar wind. For example, the isotropiza-
tion of cosmic-ray particles at SNR shock fronts is often
considered to occur at the rate of Bohm diffusion, which
can only be strictly derived in the limit of strong turbu-
lence (Shalchi 2009). In weak or intermediate magnetic
turbulence with δB . B0, isotropization will be signif-

icantly slower and the efficiency of the diffusive shock
acceleration process will be diminished.

Pitch-angle scattering on short timescales is particu-
larly important in quasiperpendicular shocks. It has been
proposed (Sagdeev 1966) that low-energy ions entering
the shock foot from the upstream region can be trapped
by the electrostatic potential drop in the ramp. Within
a few gyroperiods, ions may be accelerated while surfing
along the convective electric field parallel to the surface
of the shock front. Thus they can gain even higher en-
ergies, which are required for subsequent efficient Fermi
acceleration. The details of this process, however, de-
pend on how fast pitch-angle scattering proceeds over
these few gyroperiods (Kirk & Heavens 1989).

The acceleration of dust particles moving through the
interstellar medium at velocities close to the Alfvén speed
similarly depends on the rate of pitch-angle scattering
(Lazarian & Yan 2002; Hoang et al. 2012). Consequently,
a large number of comparisons between analytical predic-
tions of this rate and test-particle simulations has been
published (Michalek & Ostrowski 1998; Qin & Shalchi
2009; Dalena et al. 2012; Tautz et al. 2013).

Most of these studies assumed a power-law spectrum
for the magnetic turbulence and neglected the influence
of cross helicity. Starting with a random distribution of
the complex phases of the individual wave modes, real-
izations of the magnetic field were generated from this
analytic description and used to compute test-particle
trajectories. While this scheme represents a computa-
tionally efficient method of creating turbulence with a
wide inertial range, it is only useful for comparisons with
a magnetostatic turbulence model as it fails to capture
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the nonlinear effects important for a realistic description
of the dynamic evolution of the turbulence, and in par-
ticular of the electric fields (Arzner et al. 2006).

These shortcomings can be avoided by using fields gen-
erated in numerical three-dimensional MHD simulations
to compute the test-particle scattering (e. g. Lehe et al.
2009; Lynn et al. 2012), at the cost of a narrower iner-
tial range than is possible with the analytic approach. If
one aims to investigate the effects of cross helicity, which
manifest themselves primarily in the dynamic propaga-
tion of Alfvén waves and a reduction of the motional elec-
tric field emot = −u× b, a full-MHD approach becomes
necessary to obtain realistic results at particle speeds
comparable to the Alfvén velocity.

Only few authors have numerically investigated the
scattering of cosmic-ray particles in plasmas of non-
vanishing cross helicity. Beresnyak et al. (2011) stud-
ied the scattering of relativistic test-particles in balanced
and imbalanced MHD fields, but did not report observ-
ing any influence of the cross helicity on the pitch-angle-
averaged scattering frequency. Teaca et al. (2014) found
that the decreased magnitude of emot in cross-helical
MHD turbulence slows down the isotropization of Alfvén-
speed particles significantly.

Here we present our results on the pitch-angle depen-
dence of test-particle scattering in simulations of cross-
helical MHD turbulence and compare them to predic-
tions of the pitch-angle diffusion coefficient derived from
quasilinear theory (Schlickeiser 1989).

This article is structured as follows: After an overview
of various turbulence models used in quasilinear theory
and how they affect the predicted pitch-angle diffusion
coefficient in imbalanced turbulence (Section 2), we dis-
cuss the computational methods employed in our inves-
tigation (Section 3), including a detailed analysis of the
structure of electric and magnetic fields in MHD simula-
tions of plasma turbulence with various cross helicities.
Having explained the rationale behind our choice of diag-
nostics, we present the results on pitch-angle scattering
for test-particle simulations in these cross-helical turbu-
lent fields (Section 4) before we summarize our findings in
order to draw several important conclusions (Section 5).

2. QUASILINEAR PREDICTIONS

2.1. Magnetostatic turbulence

The diffusion of a beam of charged cosmic-ray parti-
cles with velocity v in a turbulent magnetic field b(x) is
commonly described in terms of a Fokker-Planck equa-
tion for the cosmic-ray phase-space density f(µ, z), where
µ = cos(vz/v) is the cosine of the pitch-angle and z is
the coordinate along the global mean magnetic field B0ẑ
(e. g. Schlickeiser 2002; Shalchi 2009):

∂f

∂t
+ v µ

∂f

∂z
=

∂

∂µ

(
Dµµ

∂f

∂µ

)
. (1)

The form of the quasilinear pitch-angle diffusion coef-
ficient Dµµ = limt→∞〈[µ(t)−µ(0)]2〉/2t was first derived
for cosmic-ray particles in magnetostatic slab turbulence
by Jokipii (1966). Expanding the turbulent magnetic
field b(x) = B0ẑ + δb⊥(z) in a perpendicular perturba-
tion δb⊥(z) ⊥ ẑ that only depends on the coordinate

along the zeroth-order mean field B0ẑ, he found that

Dµµ =
π

4
Ω2−s(1− µ2)

δB2

B2
0

|vµ|s−1(s− 1)ks−1
min . (2)

Here, the power spectrum of the magnetic field pertur-
bations is assumed as a slab spectrum |δb⊥(kz)|2dkz =
δB2(s − 1)ks−1

min k
−s
z dkz with a spectral index s, a lower

cutoff wavenumber at kmin, and root-mean-square am-
plitude 〈δb2

⊥〉1/2 = |δB|.
As the typical velocity of cosmic-ray particles v ∼ c

exceeds the typical Alfvén velocity in the interstellar
medium vA ∼ 10 km s−1 by several orders of magnitude,
the magnetic turbulence can be approximated as being
time-independent. In the limit of very small wave fre-
quencies Ω� vkmin, we can also presume that the char-
acteristic electric field strength δE becomes negligibly
small since Faraday’s law implies δE ∼ Ω|δB|/k. As a
consequence of these assumptions, the cross helicity does
not enter into equation (2).

2.2. Electrodynamic turbulence

For charged particles with v ∼ vA, however, the prop-
agation speed of shear-Alfvén waves must be consid-
ered. As first shown by Schlickeiser (1989), all pow-
ers of γ = vA/v must be included in the derivation
of Dµµ to obtain the correct result. Accounting for
the time-dependence of the magnetic turbulence and,
through Faraday’s law, the resulting electric fields self-
consistently, one finds for the quasilinear pitch-angle dif-
fusion coefficient in incompressible MHD turbulence:

Dµµ =
π

2
Ω2 B−2

0 (1− µ2)

×
∑
β=±1

|vµ+ βvA|−1 EβB
(
k(β)

res

)
(3)

Here β ∈ {+1,−1} distinguishes shear-Alfvén waves
traveling along (β = −1) or opposite (β = +1) the mean-
field axis, the only types of waves that we consider in
our simplified model of incompressible slab turbulence.
We neglect additional contributions to the Fokker-Planck
equation proportional to ∂pf and ∂2

pf that result in adi-
abatic focusing and stochastic heating, focusing only on
the pitch-angle evolution of a monoenergetic particle dis-
tribution.

The total turbulence energy of the system can be sep-
arated into the energies contained in counter- and co-
propagating waves traveling opposite to or along the di-
rection of the mean magnetic field, the so-called positive
and negative Elsasser energies E± = 〈(u ± δb)2〉/4. In
quasilinear theory, an analogous decomposition into two
Alfvén-wave populations is used for only the magnetic
turbulence energy as well (Dung & Schlickeiser 1990),
and we have written the respective components of the

magnetic-turbulence power spectrum as EβB(kz) above.
The wave numbers resonant with each wave population

are defined as k
(β)
res = Ω/(vµ + βvA). In case the power

spectra for both wave populations are not equal, the de-
gree of imbalance between both propagation directions
can be captured in the normalized cross helicity

σc =
E+ − E−

E+ + E−
. (4)
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Written in terms of σc, in the electrodynamic case the
pitch-angle diffusion coefficient Dµµ becomes (Dung &
Schlickeiser 1990)

Dµµ =
π

4
(1− µ2)

∑
β=±

Ω2−sβ (δB)2

B2
0

(sβ − 1)ks
β−1

min

× vs
β−1 (1 + βµγ)

2 |µ+ βγ|s
β−1 (1 + βσc). (5)

To obtain this equation, we assume that the magnetic
turbulence spectrum can be decomposed into contribu-
tions by co- and counter-propagating Alfvén waves in
the same manner as the Elsasser energies, so that the
two spectra

|δb±(kz)|2dkz = (δB±)2 (1− s±) ks
±−1

min k−s
±

z dkz (6)

describe the magnetic turbulence due to the two Alfvén-
wave populations, where (δB±)2 = δB2(1 ± σc) is the
root-mean-square of the magnetic turbulence in the two
wave populations.

2.3. Magnetodynamic turbulence

In order to distinguish between the pitch-angle scat-
tering caused by the electric-field acceleration and that
due to the magnetic field alone, we have performed test-
particle runs in which the electric-field component of the
Lorentz force was not included. Without electric heat-
ing, the pitch-angle diffusion equation (1) becomes exact
again, although Dµµ must be adapted to this ‘magne-
todynamic’ turbulence model. Generalizing the results
that Shalchi et al. (2009) published for balanced turbu-
lence to arbitrary cross helicity, we obtain for the pitch-
angle diffusion coefficient:

Dµµ =
π

4

∑
β=±1

Ω2−sβ (δB)2

B2
0

(sβ − 1) ks
β−1

min vs
β−1

× (1− µ2) |µ+ βγ|s
β−1 (1 + βσc). (7)

As one can easily check, eqns. (5) and (7) are identi-
cal to (2) if the Alfvén velocity becomes negligibly small
compared to the particle velocity (v � vA or equivalently
γ � 1) and both wave populations exhibit the same spec-
tral exponent (s+ = s−). The quasilinear predictions for
the pitch-angle diffusion coefficient in all three different
cases in zero cross-helicity turbulence and strongly im-
balanced turbulence are compared in Figure 1.

3. METHODS

3.1. MHD setup

In order to compare the validity of the quasilinear slab-
turbulence results for the pitch-angle diffusion with nu-
merical results, we use the pseudospectral MHD code
Turbo (Teaca et al. 2009) to obtain representations
of turbulent fields in which we propagate test-particles.
Employing Alfvénic units, Turbo solves the equations
of resistive incompressible MHD on a cubic grid with pe-
riodic boundaries:

∂tu = −(u · ∇)u + (b · ∇)b + ν ∇2u+fu −∇p̃, (8)

∂tb = −(u · ∇)b + (b · ∇)u + η ∇2b+f b (9)

Here p̃ = p/ρ is a re-normalized pressure that ensures
that the velocity field remains divergence-free, ν and
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Fig. 1.— Shapes of the pitch-angle diffusion coefficient Dµµ ac-
cording to quasilinear theory for Alfvén-speed particles (v = vA)
in magnetostatic turbulence (dotted), magnetodynamic turbulence
(dashed), and fully electrodynamic MHD turbulence (solid lines)
with amplitude δB/B0 = 0.1 and Kolmogorov-like spectra s+ =
s− = 5/3 for normalized cross helicities σc = 0.0 and σc = 0.9.
(λ‖ = 2π/kmin)

η are kinetic viscosity and magnetic diffusivity, respec-
tively, while fu and fb are forcing fields. The magnetic
field b includes a constant guiding field B0 applied along
the z direction.

The cross-helical forcing scheme we use decomposes
the Fourier-transformed fields u(k) and b(k) into eigen-
modes of the curl operator. These helical eigenmodes
for wave vectors in the ellipsoidal shell 2.5 ≤ k2

⊥ +
102k2

z ≤ 3.5 are then forced separately in such a way
that the injected amounts of energy (E), kinetic helic-
ity (Hkin), magnetic helicity (Hmag), and cross-helicity
(K = 〈u · δb〉 = σcE) are constant. Accordingly, we
define the perpendicular and parallel correlation lengths
as λ⊥ = 2π/3 and λ‖ = 10λ⊥. The k-space ellipsoid is
shortened by a factor of 10 along the kz axis to allow for
anisotropic forcing of the turbulent fields so that the tur-
bulence can attain stable steady-states in the presence of
a magnetic guide field. In particular, turbulent energy
can be supplied to the system at the rate ε = ∂E/∂t with-
out affecting any of the helicities, or cross-helicity can be
injected at a desired rate σ = (∂K/∂t)/ε to drive the
system towards an imbalanced steady-state with K 6= 0.

The fields used for the test-particle runs were obtained
on 5123 grids with physical side lengths of 2π × 2π × 20π
and periodic boundary conditions. This anisotropically
shaped simulation domain allows the turbulence to reach
a steady-state in the presence of a strong magnetic mean-
field along the z direction, B0 = 10 |δB|, with |δB| =
〈(b−B0)2〉1/2.

Viscosity and magnetic diffusivity are chosen to ensure
that Kolmogorov’s dissipation length `K = (ν3/ε)

1/4 is
resolved by the numerical grid in all directions. Since we
use isotropic viscosity and diffusivity coefficients, energy
dissipation remains an essentially isotropic process, while
the physical size of the numerical domain is anisotropic.
Kolmogorov’s dissipation length therefore corresponds
to fewer grid cells in the direction along the mean-field
than perpendicular to it, and resolving it with the same
accuracy in both directions is impossible. With our
choice of dissipation coefficients, Kolmogorov’s dissipa-
tion length `K fulfills k∆⊥`K ∼ 12 and k∆‖`K ∼ 1.2,

where k∆⊥ = π/∆x and k∆‖ = π/∆z are the wavenum-
bers corresponding to the grid resolution in perpendicu-
lar and parallel direction, respectively.

Driving turbulence with an energy-injection rate ε =
0.1 and cross-helicity injection rate σ = 0.0 leads to a bal-
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Fig. 2.— Steady-state spectra of positive (black) and negative
(red) Elsasser energies, E± = (u± δb)2/4, for balanced (σc = 0.0,
dashed lines) and strongly imbalanced (σc = 0.9, solid lines) cases.
a) Spectrum perpendicular to B0. b) Parallel spectrum

anced steady-state with σc = K/E = 0.0, while changing
the cross-helicity injection to σ = 0.8 eventually yields a
steady-state cross helicity of σc = 0.9. The latter value is
obtained from averaging the scalar product K = 〈u · δb〉,
which saturates at K = 0.9 E when the dissipation of
energy and cross helicity matches their injection rates.
Similarly, injecting positive or negative cross helicity at
a lower rate (σ = ±0.5) results in a steady-state config-
uration with σc = ±0.6, respectively.

Figure 2 provides comparisons of steady-state spectra
for σc = 0.0 and σc = 0.9. For the strongly imbalanced
case (solid lines), the Elsasser energy with the same (in
this case, positive) sign as the total cross-helicity dom-
inates over the opposite Elsasser energy at low k . 20,
while both Elsasser energies are in equipartition in the
balanced case. The positive Elsasser energy is gener-
ally associated with waves propagating opposite to a
strong magnetic mean-field. We deduce that the major-
ity of the propagating shear Alfvén waves in the imbal-
anced case has a phase velocity directed opposite to the
mean field (their energy is respresented by E+), while the
wave distribution in the balanced case exhibits no such
anisotropy.

The spectra in the direction parallel to the mean field
show a similar dominance of the Elsasser energy with
the same sign as the cross-helicity (Figure 2). As ana-
lytical predictions and recent solar-wind measurements
have shown (see Podesta (2009) and references therein),
one expects a scaling E ∝ k−2

z , and indeed this scal-
ing fits our simulations well in the balanced case. In the
cross-helical cases, the spectral indices of the positive and
negative Elsasser energies differ slightly (Grappin et al.
1983).

The imbalance of the cross-helical cases is also obvious
in plots of the spatial distribution of the cosine between
the velocity field and the magnetic field b = B0 + δb.
The zero-cross-helicity case exhibits positive and nega-
tive values of cos∠(u,b) in approximately equal propor-

tion (Figure 3a,b). For the strongly cross-helical case
with σc = 0.9, the velocity field shows a similarly weak
correlation with the total magnetic field (Figure 3c; how-
ever, note the small changes in the slope of the his-
togram curve at the extremal values cos∠(u,b) = ±1 in
b), while positive values of cos∠(u, δb) dominate if the
alignment between the velocity field and only the fluctu-
ations of the magnetic field is considered (Figure 3d). A
similar plot of cos∠(u, δb) for the balanced case is not
depicted since it varies only negligibly from the total-field
alignment already shown in Figure 3a.

Due to the almost identical distribution of the align-
ment of u and (B0 + δb) in balanced and cross-helical
turbulence, both cases exhibit a similar level of isotropy
of the motional electric field along the mean-field di-
rection. The distribution of ez is symmetric around
ez = 0 with an approximately exponential drop-off in
both directions (Breech et al. 2003), with the global
average 〈ez〉 = 0.000458〈|e|〉 in the balanced case and
〈ez〉 = −0.000034〈|e|〉 in the strongly cross-helical case
(σc = 0.9).

In order to investigate the presence of incompressible
Alfvén waves, we switched off forcing and dissipation
once the balanced and imbalanced field configurations
had reached a steady-state. Setting fu = fb = η = ν = 0,
we ensure that the propagation of shear-Alfvén waves
is not disturbed by non-ideal effects, which are not ac-
counted for in the derivation of the quasilinear diffu-
sion coefficients. Comparing the power spectra of the
magnetic field Fourier-transformed in space and time
(Figure 4), we find evidence of Alfvén waves traveling
along and opposite the mean-field direction and there-
fore confirm that the evolution of the MHD turbulence is
shaped mainly by propagating shear-Alfvén waves. The
x-shaped dispersion plot of the balanced case is symmet-
ric with respect to the kz = 0 line, indicating that the
waves propagating parallel and antiparallel to the mean
field are equally strong. In the strongly cross-helical case
(σc = 0.9), there is more energy in the modes along
ω = −vAkz than in the modes with the oppositely di-
rected phase velocity along ω = +vAkz, particularly at
larger kz, indicating once more a dominance of Alfvén
waves propagating opposite to the mean- field.

3.2. Test-particle setup

We continue using zero forcing and dissipation while
we compute the forces that test-particles experience in
these turbulent steady-state fields. The trajectories of
these test-particles are evolved using an implicit fourth-
order Runge-Kutta solver with an adaptively determined
timestep size. Their velocity at each timestep is calcu-
lated using the Lorentz force computed from the MHD
magnetic field b and, in some runs, the motional electric
field emot = −u × b, as interpolated from the grid data
using third-order spline functions.

At the starting time t = 0 of the test-particle simula-
tion, ensembles of Np = 2× 104 particles are distributed
randomly on the grid, with an energy equal to Ep =
v(0)2/2 and a velocity vz = µv(0) along the direction of
the mean-field magnetic field. The initial pitch-angle co-
sine µ differs for each ensemble, taking values from -1.0
to 1.0. To demonstrate the interaction with propagating
Alfvén waves, we initialize the test-particle ensembles
with velocities close to the Alfvén velocity, using both
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Fig. 3.— a) Alignment of velocity and magnetic fields, cos∠(u,b), in balanced turbulence. b) Histograms of alignment in steady-state
balanced turbulence (a), alignment of velocity and total magnetic field (c) and of velocity and magnetic fluctuations (d) in strongly cross-
helical turbulence. c) Alignment distribution of cos∠(u,b) in strongly cross-helical turbulence (σc = 0.9). d) Distribution of cos∠(u, δb)
in the same snapshot of strongly cross-helical turbulence
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Fig. 4.— Power spectra P (kz , ω) of a) balanced (σc = 0.0) and
b) strongly cross-helical (σc = 0.9) MHD turbulence

v(0) = vA and v(0) = 3vA. The charge-to-mass ratio of
the test-particles is chosen such that their initial gyrora-
dius is rg(0) = v(0)/(qB0/m) = 0.12λ⊥ for Alfvén-speed
particles and rg(0) = 0.36λ⊥ for v(0) = 3vA.

Since our goal is to compare analytical pitch-angle dif-
fusion coefficients predicted by quasilinear theory with
simulation results, we define µ as the cosine of the an-
gle subtended by the particle velocity and the direction
of the global mean magnetic field (the z direction) and
thus follow the QLT convention. Using an only locally
averaged mean-field direction as reference would yield a
pitch-angle diffusion coefficient that would not fully con-

form to the quasilinear definition. QLT is derived by
expanding the equations of motion in a small perturba-
tion of a globally constant magnetic field, hence it is the
global mean-field direction that is relevant for a compar-
ison.

3.3. Measuring pitch-angle scattering

In order to compare the pitch-angle scattering of test-
particles on short timescales with quasilinear estimates,
we define

∆µµ(µ(0)) =
1

2

〈
[µ(Tg)− µ(0)]

2

Tg

〉
(10)

as the scattering rate after one gyroperiod. Here µ(0)
and µ(Tg) are the pitch-angle cosine at the test-particle
injection time and after one gyroperiod, respectively.
Whereas Dµµ, as defined above in the context of QLT,
corresponds to an infinite-time limit, we decided to mea-
sure ∆µµ instead for several reasons. Although calculat-
ing ∆µµ for timescales significantly longer than Tg could
be expected to improve the agreement with quasilinear
calculations of Dµµ, we will demonstrate that this is not
the case, due to various effects which were not included
in the derivation of the quasilinear coefficients above, but
which are inevitably present both in our simulations and
in realistic MHD turbulence. In Appendix A, we demon-
strate that ∆µµ is bounded below by Dµµ.

First, as the pitch-angle cosine µ is limited to the inter-
val [−1,+1], its evolution is subject to boundary effects.
Measuring the mean-square pitch-angle deviation

∆µ2(t) =
〈

[µ(t)− µ(0)]
2
〉

(11)

for large t will, in general, underestimate the diffusion
coefficient Dµµ(µ(0)) at the initial µ(0) as some test-
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particles will have been reflected at the boundaries. Even
before this reflection occurs, however, Dµµ(µ) varies
strongly with µ and is therefore difficult to determine
if the pitch-angle distribution spreads too quickly. This
is particularly relevant if the turbulence amplitude is
too large (for instance δB/B0 ∼ 1). In that case, even
particles with a gyroradius as small as rg(0) = 0.36λ⊥
isotropize almost completely within a single gyroperiod.
Therefore, we only present results for an intermediate
turbulence strength of δB/B0 = 0.1.

Second, our goal is to investigate the role of electric
fields, which accelerate or decelerate test-particles on
longer timescales. Since the Fokker-Planck equation (1)
does not account for these effects, good agreement can
only be expected if the timescales on which ∆µµ is mea-
sured are short enough that the change in kinetic energy
is negligible.

Most importantly, we will demonstrate that pitch-
angle scattering on longer timescales is severely con-
strained by the approximate conservation of the magnetic
moment,

Mmag = m
v2
⊥

2B
, (12)

the first adiabatic invariant in slowly varying magnetic
fields (Landau & Lifshitz 1982). The standard formula-
tion of quasilinear theory does not account for the ap-
proximate conservation of Mmag (Goldstein 1980; Jaekel
1998; see however Schlickeiser & Jenko 2010). As an
adiabatic invariant, Mmag needs only be considered for
the evolution of ∆µ2 on timescales exceeding several gy-
roperiods, so that ∆µµ, which is computed after only
one gyroperiod, is not affected by these constraints and
therefore allows for a better comparison with quasilin-
ear predictions. Although the absolute value of ∆µµ will
not necessarily be close to the value of Dµµ in all cases,
the scaling with the pitch-angle cosine µ, which is our
primary concern in these investigations of cross-helical
turbulence, will be almost identical.

4. PITCH-ANGLE SCATTERING IN CROSS-HELICAL
TURBULENCE

4.1. Fully electrodynamic runs

We begin with the most realistic scenario, fully electro-
dynamic turbulence, in which the evolution of the MHD
fields is computed in parallel with the test-particle tra-
jectories. The initial conditions correspond to the field
configurations presented in Subsection 3.1. In Figure 5,
we show the evolution of the kinetic energy, the mag-
netic moment, and the mean-square pitch-angle devia-
tion for two representative ensembles with v(0) = 3vA
and µ(0) = ±0.6 in balanced and strongly imbalanced
turbulence.

For both ensembles in the balanced-turbulence case,
energy and the averaged magnetic moment oscillate with
the gyrofrequency, but the values of the minima attained
after each full gyroperiod show only negligible variation.
The mean-square deviation of Mmag, as indicated by the
shaded regions, converges to about 12 % of the initial
value as the magnetic moment is conserved to a large
degree because of the relatively weak perturbation am-
plitude δB/B0. This puts a limit to the evolution of
∆µ2(t), however, since the kinetic energy, the magnetic
moment, and the pitch-angle cosine are approximately

Fig. 5.— Evolution in fully electrodynamic turbulence for the
relative change of the kinetic energy ∆E, the ensemble-averaged
magnetic moment Mmag (1σ-deviation shaded in blue/red), and
the mean-square displacement of the pitch-angle cosine, ∆µ2, for
particles with v(0) = 3vA and µ(0) = −0.6 (red) and µ(0) = +0.6
(blue)
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Fig. 6.— Fully electrodynamic case: best-fit values with respect
to equation (5) for the cross helicity σ(fit), the magnetic-turbulence

amplitude δB(fit), and the spectral indices s+ (blue crosses) and
s− (red circles), for particles with v(0) = vA (left) and v(0) = 3vA
(right), for four values of σ
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Fig. 7.— Fully electrodynamic case: pitch-angle scattering rate ∆µµ(µ) for cosmic-ray particles with v = vA and gyroradius r0 =
v/(αB0) = 0.12λ⊥ determined numerically (solid dots) and best-fit curves from eqn. (5) (dotted lines), and for particles with v = 3vA and
gyroradius r0 = 0.36λ⊥ (hollow dots and dashed line). a) Balanced turbulence with σc = 0.0 b) Strongly cross-helical turbulence with
σc = 0.9 c) Cross-helical turbulence with σc = −0.6 d) Cross-helical turbulence with σc = 0.6

connected via

E ≈MmagB + Eµ2. (13)

This relation is valid if we assume that the magnetic tur-
bulence is so weak that the difference between the aver-
aged velocity components 〈v2

‖〉 along the local magnetic-

field direction and 〈v2
z〉 along the global mean-field can be

neglected, the difference being of order (δB/B0)2. Con-
sequently, the minima of ∆µ2(t) after each gyroperiod
increase in value for two gyroperiods before settling on
an almost constant value.

In imbalanced turbulence with σc = 0.9, the test-
particle ensemble with a positive pitch-angle of µ(0) =
+0.6 evolves similarly to the balanced case. However,
the counter-propagating particles with µ(0) = −0.6 are
much closer to resonance with the dominating Alfén-wave
population, which is traveling opposite to the mean-field
direction as well. Consequently, these particles undergo
deceleration as a result of inverse Landau damping and
their kinetic energy exhibits a steady decrease (red lines
in Figure 5). While the magnetic moment is approxi-
mately conserved again, the variation in energy makes it
possible for pitch-angle scattering to continue on longer
timescales; hence the minima of ∆µ2(t) after each gy-
roperiod grow steadily. Obviously, a comparison of the
mean-square pitch-angle deviations for co- and counter-
propagating ensembles on these longer times would be
misleading. Instead, as described above, we compare the

values of the first minima of ∆µ2 (or rather the slopes of
the dotted lines through these minima).

These values of ∆µµ for 21 different initial pitch-angles
(µ(0) ∈ {−1,−0.9, . . . ,+1.0}) are then used to determine
a best-fit parameter set {δB(fit), σ(fit), s+, s−} for the
quasilinear prediction forDµµ given by equation (5). The
remaining parameters (kmin,Ω0, γ) were fixed at their ac-
tual values before the optimization was initialized. Al-
though equation (5) was derived under the assumption of
a highly simplified slab spectrum with a constant power
index, hardly what our simulations of realistic MHD ex-
hibit in Figure 2, it will become clear that the agreement
of ∆µµ and the quasilinear predictions of Dµµ is rather
striking. The results from a Levenberg-Marquardt fit us-
ing our measurements of ∆µµ(µ) are shown in Figure 6.

The fit-values of σ(fit) match the values of σ used for
the cross-helicity injection well in all cases. A decrease of
the fit quality if one Elsasser energy is very small (that
is, for σ = 0.8) is visible but not surprising. The rel-
ative turbulence amplitudes δB(fit)/B0 are close to the
actual value δB/B0 = 0.1, usually lying slightly below
because the particle scattering is mainly due to only the
slab component of the turbulence. The spectral indices
obtained from the fit procedure are almost always larger
than the predictions for the inertial-range spectrum in
Kolmogorov’s or Kraichnan’s theories (5/3 or 3/2, re-
spectively) since, like realistic turbulence, the spectra in
our simulations steepen at the transition to the dissipa-



8

0.96 1
¹

0.96 1
¹

b)

-1 -0.96
0

20
40
60
80 ¾c =0:0

a)

-1 -0.96

¾c =0:9

Fig. 8.— Fully electrodynamic case: histograms of the pitch-
angle cosine after ten gyroperiods for test-particles with v(0) = 3vA
and µ(0) = ±1.0 in a) balanced turbulence (σc = 0.0), b) strongly
imbalanced turbulence (σc = 0.9)

tion range (see Figure 2).
The graphs of the quasilinear Dµµ for these param-

eter sets perfectly match the scattering rates ∆µµ de-
termined from the test-particle trajectories, as shown in
Figure 7. Whereas the graphs in the balanced case are
symmetric with respect to the sign of µ(0), particles in
the imbalanced cases are scattered faster within the first
gyroperiod if they travel in the direction of the weaker
Alfvén-wave population (if µ(0) > 0 for σ > 0 and vice
versa).

This asymmetry is shown more directly in Figure 8,
which contains pitch-angle histograms of particles with
v(0) = 3vA after ten gyroperiods for test-particles ini-
tially propagating exactly parallel or anti-parallel to the
mean-field direction. In this case, both the heating
that was observed for the negative-µ ensemble in Fig-
ure 5d and the initial magnetic moment are insignifi-
cantly small, and the behavior predicted by quasilinear
theory can be observed for much longer. While both
ensembles, with µ(0) = +1 and with µ(0) = −1, are
scattered equally fast in balanced MHD turbulence, pos-
itive cross helicity leads to particles propagating along
the mean-field direction being scattered much faster than
in the opposite case.

In Figure 9, we compare similar histograms of sample
pitch-angle distributions after one gyroperiod with solu-
tions that we directly obtained from the Fokker-Planck
equation (1), using f(µ, t = 0) = δ(µ(0) − µ) as initial
condition and assuming a homogeneous density along the
z-coordinate. While we showed above that the mean-
square displacement of the pitch-angle cosine after one
gyroperiod agrees with the scaling of Dµµ(µ) predicted
by QLT, Figure 9 demonstrates that the shape of the his-
tograms agrees with a diffusive broadening of the pitch-
angle distribution within the first gyroperiod. This con-
firms once more that the quasilinear prediction (5) gives
an accurate description of the pitch-angle scattering on
short timescales even in evolving imbalanced turbulence
with electric fields.

4.2. Magnetodynamic runs

There are two possible causes for this asymmetry in im-
balanced turbulence: the coherent interaction with prop-
agating Alfvén waves and the spatial structure of the
turbulent fields. To identify the more important mecha-
nism, we first ignore the electric-field component of the
Lorentz force and propagate the test-particles using only

v̇i = αvi × b(xi, t). (14)

-0.3 0.0 0.3
¹
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20 a) ¾c =0:0
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Fig. 9.— Fully electrodynamic case: histograms of the pitch-
angle cosine after one gyroperiod for test-particles with a) v(0) =
vA and µ(0) = 0.0 in balanced turbulence with σc = 0.0, b) v(0) =
3vA and µ(0) = +0.5 in strongly imbalanced turbulence with σc =
0.9

Fig. 10.— Magnetodynamic case: evolution of Mmag and ∆µ2

as in figure 5
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Fig. 11.— Magnetodynamic case: best-fit values for equation (7)

for σ(fit) for particles ensembles with v(0) = vA (left column) and
v(0) = 3vA (right), for four different values of σ

In the ‘magnetodynamic’ runs presented in this sub-
section, the MHD fields were still dynamically evolved in
parallel with the test-particles. Since the acceleration is
perpendicular to the velocity at each time step, the ki-
netic energy of each test-particle is perfectly conserved.
As shown in Figure 10, the evolution of both ensembles in
the balanced case and of the positive-µ ensemble in the
imbalanced case is similar to the fully electrodynamic
setting presented above.

However, the averaged magnetic moment of the en-
semble with µ(0) = −0.6 visibly increases on longer
timescales. Similarly, the distribution of Mmag contin-
ues to broaden for at least ten gyroperiods, as indicated
by the red shaded region in Figure 10c. Although the en-
semble in Landau resonance with the dominant Alfvén-
wave population cannot be decelerated anymore because



9

−1.0 −0.5 0.0 0.5 1.0
¹=cos vz=v

0

1

2

3

4

¢
¹
¹
£
10
3
¸

∥=
v ¾c =0:0

a)

−1.0 −0.5 0.0 0.5 1.0
¹=cos vz=v

0
1
2
3
4
5
6

¢
¹
¹
£
10
3
¸

∥=
v ¾c =0:9

b)

−1.0 −0.5 0.0 0.5 1.0
¹=cos vz=v

0

1

2

3

4

¢
¹
¹
£
10
3
¸

∥=
v ¾c =¡0:6

c)

−1.0 −0.5 0.0 0.5 1.0
¹=cos vz=v

0

1

2

3

4

¢
¹
¹
£
10
3
¸

∥=
v ¾c =0:6

d)

Fig. 12.— Magnetodynamic case: pitch-angle scattering rate ∆µµ(µ) for cosmic-ray particles determined numerically after one gyroperiod
and from a Levenberg-Marquardt fit to eqn. (7). See caption of figure 7

electric acceleration is not considered, the coherent inter-
action with the magnetic component of the Alfvén waves
is now able to violate the approximate conservation of
the magnetic moment. Energy is transfered from the vz-
component into the perpendicular velocity components.
Without a constant adiabatic invariant, the pitch-angle
cosine can decrease as before, even though the kinetic
energy is fixed, and ∆µ2(t) keeps increasing at a similar
rate as in the fully electrodynamic runs.

We use the first minima of ∆µ2 for µ(0) ∈
{−1,−0.9, . . . ,+1.0} to determine a best-fit parameter
set with the quasilinear Dµµ in magnetodynamic turbu-
lence for the same variables as before, but with Dµµ given
by equation (7). Most of the results are similar to those
presented in the previous subsection, so we only show
the best-fit cross-helicity values σ(fit) in Figure 11. The
results for the Alfvén-speed ensemble (v(0) = vA) are
highly inaccurate, while the ensemble with v(0) = 3vA
at least exhibits the correct trend: σ(fit) grows weakly as
σ increases.

Plotting Dµµ and ∆µµ in Figure 12, we see that, with-
out electric fields, the scattering asymmetry is strongly
reduced compared to the graphs in Figure 7. Electric
fields obviously play a crucial role in establishing this
asymmetry in imbalanced turbulence.

4.3. Magnetostatic runs

To determine the relative importance of wave propa-
gation, we have also performed test-particle simulations
with single static snapshots of the magnetic-field config-
urations. In these magnetostatic runs, we calculate the
Lorentz force on the particles using only the magnetic
field, similar to the previous subsection (equation (14))
but without evolving the field in time.

Fig. 13.— Magnetostatic case: Evolution of Mmag and ∆µ2 as
in figure 5

Since particles can no longer interact coherently with
traveling waves, Landau resonance as observed before is
impossible and pitch-angle scattering proceeds at simi-
lar rates for positive and negative µ(0) even in strongly
cross-helical turbulence. As shown in Figure 13, the
mean magnetic moment stays constant throughout the
simulations and ∆µ2(t) settles on an approximately con-
stant value after a few gyroperiods.

Evolving the trajectories for longer times, which is pos-
sible since magnetostatic test-particle simulations are not
very demanding compared to fully electrodynamic runs,
yields a subdiffusive behavior of the pitch-angle distri-
bution. Thus, we computed ∆µµ after one gyroperiod
again to perform a best-fit operation, varying δB and
s in equation (2). As we found statistical noise to be
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Fig. 14.— Magnetostatic case: pitch-angle scattering rate ∆µµ(µ) for cosmic-ray particles determined numerically after one gyroperiod
and from a Levenberg-Marquardt fit to eqn. (2). See caption of figure 7

significantly larger in static runs than in the evolving-
MHD runs presented above, we show a 10 %-error bar
in the plots of ∆µµ(µ). Repeating each test-particle run
in ten different static snapshots of the magnetic field for
otherwise identical parameters, we found that the values
we obtained for ∆µµ varied by this amount, whereas the
evolving-MHD runs only varied by about 2 %.

Taking this statistical noise into account, the graphs
of ∆µµ(µ) are symmetrical with respect to the sign of
µ (see Figure 14). Cross helicity is therefore irrelevant
in magnetostatic turbulence, and the spatial structure
of the magnetic fields can be ruled out as a contributor
to the scattering asymmetry. As a sidenote, we remark
that none of our results were affected by the sign of the
test-particle charge, proving that magnetic-helicity con-
tributions to the scattering asymmetry, which would be
sensitive to the particle charge, are insignificant.

4.4. Static-electromagnetic runs

Adding the electric-field component back into the
Lorentz force while still using only static field snapshots,
we found that this asymmetry can be re-established (Fig-
ure 15). While the absolute scattering rates ∆µµ are re-
duced to about 70 % compared to the values for the fully
electrodynamic runs in Figure 7, the shapes of the graphs
are almost identical to their fully electrodynamic equiv-
alents in each case, especially if one takes the statistical
noise into account.

Since the electromagnetic fields of the Alfvén waves
are fixed in time and space in these runs, it is the spa-
tial structure of the electric fields that must be the pre-
dominant soure of the scattering asymmetry. Hence, we
conclude that particles in fully evolving MHD turbu-
lence with non-zero cross helicity are scattered differently

for positive and negative pitch-angles not only because
of coherent wave-particle interactions, but additionally
because the spatial structure of electric fields in imbal-
anced turbulence favors such an asymmetry. Of course,
this structure can be viewed as the result of the im-
balance between Alfvén-waves propagating parallel and
anti-parallel to the magnetic mean-field direction, a prop-
erty that is conserved when the fields are frozen.

5. CONCLUSIONS

We have investigated pitch-angle scattering of charged
particles at velocities comparable to the Alfvén speed in
realistically evolving magnetohydrodynamic turbulence
with non-zero cross helicity. The dependence of ∆µµ on
the initial pitch-angle is qualitatively well described by
quasilinear diffusion theory under the assumption of a
simple slab spectrum. The agreement with the theoret-
ical prediction is particularly impressive in the case of
fully electrodynamic turbulence, showing that, for exam-
ple, the interaction of Alfvén-speed dust particles with
shear-Alfvén waves they encounter in the solar wind can
be modeled accurately by equation (5), at least on short
timescales. An almost perfect fit of the quasilinear slab
model to the numerical data is even possible in strongly
cross-helical turbulence, as we have shown; therefore the
scattering of charged particles in patches of strongly im-
balanced turbulence, such as in the fast solar wind, is
also described accurately by quasilinear theory.

However, the degree of imbalance that we have to as-
sume in order to obtain this perfect fit is lower than the
imbalance which a direct analysis of the correlation of the
turbulent MHD fields yields. Our results thus imply that
quasilinear theory tends to overestimate the asymmetry
of pitch-angle scattering in turbulence with extremely
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Fig. 15.— Static-electromagnetic case: pitch-angle scattering rate ∆µµ(µ) for cosmic-ray particles determined numerically after one
gyroperiod. See caption of figure 7

high cross helicity.
As we noted in Section 1, pitch-angle scattering over

small timescales, on which we have focused in this ar-
ticle, is important for theories describing the injection
of relatively low-energy ions into the Fermi-acceleration
mechanism at quasiperpendicular shocks (Kirk & Heav-
ens 1989). The structure of the shock-foot region is par-
ticularly sensitive to the short-time behaviour reflected
in the shape of ∆µµ(µ). Hence, our results will bene-
fit future theoretical work on quasiperpendicular shocks.
Although in such applications the overall magnetic tur-
bulence will be stronger than the intermediate levels that
we have considered here, these results can easily be trans-
ferred to pitch-angle scattering with regard to a magnetic
mean-field averaged only over intermediate lengthscales.
On such smaller scales, the anisotropy with respect to the
mean-field is more pronounced (Howes et al. 2011), and
our results are valid. Eventually, the local pitch-angle
diffusion thus derived could be combined with models
for fieldline diffusion and crossfield diffusion to obtain a
self-consistent description of the shock-foot region, con-
ceptually similar to compound diffusion (Kóta & Jokipii
2000).

It should be noted that our simulations have focused
on incompressible magnetohydrodynamics and did not
include transit-time damping by the fast magnetosonic
wave. The compressional fast mode has been shown to be
more efficient at accelerating and scattering charged par-
ticles (Schlickeiser & Miller 1998; Yan & Lazarian 2002)
than the shear-Alfvén modes included in this investiga-
tion. However, the assumption of incompressible MHD
and hence of a negligible contribution of the fast mode
is still valid in many astrophysical systems, such as the
fast solar wind.

In our magnetodynamic simulations, which differ from
the previously described fully electrodynamic case in that
we have neglected the acceleration force due to the elec-
tric fields, the pitch-angle asymmetry of the scattering
during the first gyroperiod is significantly smaller. In
static-electromagnetic runs, in which the electric force on
the test-particles was included but the turbulent fields
were frozen in time, this asymmetry is almost as pro-
nounced as in the electrodynamic runs. This contrast
implies that the pitch-angle dependence of the scatter-
ing coefficients in imbalanced turbulence is mainly due
to the spatial structure of the electric fields, and only
secondarily due to coherent wave-particle interactions,
with possibly important consequences for the isotropiza-
tion rate of cosmic-ray particles in shock fronts. It is
clear from these observations that the predictive power
of quasilinear theory for the diffusion of cosmic-ray par-
ticles in imbalanced turbulence profits immensely from
using a more realistic spectral description of cross-helical
fields.

On timescales exceeding two or three gyroperiods, we
observed that the mean-square deviation of the pitch-
angle cosine settled on an almost constant value for most
test-particle ensembles, in contradiction to the diffusive
broadening one would expect. This spreading continues
for significantly longer if the test-particles are close to
Landau resonance with the dominating Alfvén-wave pop-
ulation in imbalanced turbulence. While the presence of
electric fields allows for an energy change that accom-
panies the longer-lasting spread of ∆µ2, we found that
magnetodynamic runs conserve energy perfectly, but vi-
olate the adiabatic invariance of the magnetic moment
for such test-particles. Hence, without accounting for
adiabatic focusing as described, for example, in Schlick-
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eiser & Shalchi (2008) and Schlickeiser & Jenko (2010),
the quasilinear description of pitch-angle scattering in
imbalanced turbulence is valid, but only for a few gy-
roperiods.
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APPENDIX

THE ONE-PERIOD RESONANCE FUNCTION R(TG)

In standard applications of quasilinear theory, the resonance condition ωR = kzvz ±Ω is obtained from the infinite-
time limit of the resonance function R(t). For example, the pitch-angle diffusion coefficient in the magnetostatic-
turbulence model is

Dµµ = lim
t→∞

∫
dkz

Ω2

2

(1− µ2)

|vµ|2
|δb⊥(kz)|2

B2
0

R(t), (A1)

where the resonance function is defined as

R(t) = <
∫ t

0

dτ exp(i$τ − Γτ), (A2)

with $ = ωR−kzvz±Ω. Here Γ denotes the damping rate of the oscillations. For general t, performing the integration
and taking the real part yields

R(t) =
Γ [1− e−Γ t cos($t)] +$ e−Γ t sin($t)

Γ2 +$2
, (A3)

the infinite-time limit of which (Γt� 1) we denote as R∞:

R∞ = lim
t→∞

R(t) =
Γ

Γ2 +$2
. (A4)

Thus, the resonance function can be written as

R(t) = R∞ +Rcorr(t), (A5)

where we have defined a correction term as

Rcorr(t) = e−Γ t $ sin($t)− Γ cos($t)

Γ2 +$2
. (A6)

In the weak-damping limit (Γ→ 0), R∞ reduces to a Dirac function,

lim
Γ→0
R∞ = π δ($), (A7)

such that performing the integral in equation (A1) yields the standard result stated in equation (2). For finite times,
however, Rcorr(t) gives an additional contribution even in the limit Γ→ 0:

lim
Γ→0
R(t) = π δ($) +

sin($t)

$
. (A8)

Since the latter term is positive for t = Tg, the quasilinear result Dµµ represents a lower limit for the pitch-angle
scattering rate ∆µµ defined in equation (10).
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