44 research outputs found

    Predictions for mass-loss rates and terminal wind velocities of massive O-type stars

    Full text link
    Mass loss forms an important aspect of the evolution of massive stars, as well as for the enrichment of the surrounding ISM. Our goal is to predict accurate mass-loss rates and terminal wind velocities. These quantities can be compared to empirical values, thereby testing radiation-driven wind models. One specific issue is that of the "weak-wind problem", where empirically derived mass-loss rates fall orders of magnitude short of predicted values. We employ an established Monte Carlo model and a recently suggested new line acceleration formalism to solve the wind dynamics consistently. We provide a new grid of mass-loss rates and terminal wind velocities of O stars, and compare the values to empirical results. Our models fail to provide mass-loss rates for main-sequence stars below a luminosity of log(L/Lsun) = 5.2, where we run into a fundamental limit. At luminosities below this critical value there is insufficient momentum transferred in the region below the sonic point to kick-start the acceleration. This problem occurs at the location of the onset of the weak-wind problem. For O dwarfs, the boundary between being able to start a wind, and failing to do so, is at spectral type O6/O6.5. The direct cause of this failure is a combination of the lower luminosity and a lack of Fe V lines at the wind base. This might indicate that another mechanism is required to provide the necessary driving to initiate the wind. For stars more luminous than log(L/Lsun) = 5.2, our new mass-loss rates are in excellent agreement with the mass-loss prescription by Vink et al. 2000. This implies that the main assumption entering the method of the Vink et al. prescriptions - i.e. that the momentum equation is not explicitly solved for - does not compromise the reliability of the Vink et al. results for this part of parameter space (Abridged).Comment: 10 pages, 10 figures, Astronomy & Astrophysics (in press

    Wind modelling of very massive stars up to 300 solar masses

    Get PDF
    Some studies have claimed a universal stellar upper-mass limit of 150 Msun. A factor that is often overlooked is that there might be a difference between the current and initial masses of the most massive stars, as a result of mass loss. We present Monte Carlo mass-loss predictions for very massive stars in the range 40-300 Msun, with large luminosities and Eddington factors Gamma. Using our new dynamical approach, we find an upturn in the mass-loss vs. Gamma dependence, at the point where the winds become optically thick. This coincides with the location where wind efficiency numbers surpass the single-scattering limit of Eta = 1, reaching values up to Eta = 2.5. Our modelling suggests a transition from common O-type winds to Wolf-Rayet characteristics at the point where the winds become optically thick. This transitional behaviour is also revealed with respect to the wind acceleration parameter beta, which starts at values below 1 for the optically thin O-stars, and naturally reaches values as high as 1.5-2 for the optically thick Wolf-Rayet models. An additional finding concerns the transition in spectral morphology of the Of and WN characteristic He II line at 4686 Angstrom. When we express our mass-loss predictions as a function of the electron scattering Gamma_e (=L/M) only, we obtain a mass-loss Gamma dependence that is consistent with a previously reported power-law Mdot propto Gamma^5 (Vink 2006) that was based on our semi-empirical modelling approach. When we express Mdot in terms of both Gamma and stellar mass, we find Mdot propto M^0.8 Gamma^4.8 for our high Gamma models. Finally, we confirm that the Gamma-effect on the mass-loss predictions is much stronger than that of an increased helium abundance, calling for a fundamental revision in the way mass loss is incorporated in evolutionary models of the most massive stars.Comment: minor language changes (Astronomy & Astrophysics in press - 11 pages, 10 figures

    Mass-loss rates of Very Massive Stars

    Full text link
    We discuss the basic physics of hot-star winds and we provide mass-loss rates for (very) massive stars. Whilst the emphasis is on theoretical concepts and line-force modelling, we also discuss the current state of observations and empirical modelling, and address the issue of wind clumping.Comment: 36 pages, 15 figures, Book Chapter in "Very Massive Stars in the Local Universe", Springer, Ed. Jorick S. Vin

    The Tarantula Massive Binary Monitoring: I. Observational campaign and OB-type spectroscopic binaries

    Get PDF
    © ESO, 2017.Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims. The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods. In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results. Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions. Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe's peak of star formation at redshifts z ~ 1 to 2 which are estimated to have Z 0.5 Z

    SN 2008S: an electron capture SN from a super-AGB progenitor?

    Get PDF
    We present comprehensive photometric and spectroscopic observations of the faint transient SN 2008S discovered in NGC 6946. SN 2008S exhibited slow photometric evolution and almost no spectral variability during the first nine months, implying a high density CS medium. The light curve is similar in shape to that of SN 1998S and SN 1979C, although significantly fainter at maximum light. Our quasi-bolometric lightcurve extends to 300 days and shows a tail phase decay rate consistent with that of ^{56}Co. We propose that this is evidence for an explosion and formation of ^{56}Ni (0.0015 +/- 0.0004 M_Sun). The large MIR flux detected shortly after explosion can be explained by a light echo from pre-exisiting dust. The late NIR flux excess is plausibly due to a combination of warm newly-formed ejecta dust together with shock-heated dust in the CS environment. We reassess the progenitor object detected previously in Spitzer archive images, supplementing this discussion with a model of the MIR spectral energy distribution. This supports the idea of a dusty, optically thick shell around SN 2008S with an inner radius of nearly 90AU and outer radius of 450AU, and an inferred heating source of 3000 K and luminosity of L ~ 10^{4.6} L_Sun. The combination of our monitoring data and the evidence from the progenitor analysis leads us to support the scenario of a weak electron capture supernova explosion in a super-AGB progenitor star (of initial mass 6-8 M_sun) embedded within a thick CS gaseous envelope. We suggest that all of main properties of the electron capture SN phenomenon are observed in SN 2008S and future observations may allow a definitive answer.Comment: accepted for publication in MNRAS (2009 May 7

    Effect of a 2-week interruption in methotrexate treatment on COVID-19 vaccine response in people with immune-mediated inflammatory diseases (VROOM study):A randomised, open label, superiority trial

    Get PDF
    Background: Methotrexate is the first-line treatment for immune-mediated inflammatory diseases and reduces vaccine-induced immunity. We evaluated if a 2-week interruption of methotrexate treatment immediately after COVID-19 booster vaccination improved antibody response against the S1 receptor binding domain (S1-RBD) of the SARS-CoV-2 spike protein and live SARS-CoV-2 neutralisation compared with uninterrupted treatment in patients with immune-mediated inflammatory diseases. Method: We did a multicentre, open-label, parallel-group, randomised, superiority trial in secondary-care rheumatology and dermatology clinics in 26 hospitals in the UK. Adults (aged ≥18 years) with immune-mediated inflammatory diseases taking methotrexate (≤25 mg per week) for at least 3 months, who had received two primary vaccine doses from the UK COVID-19 vaccination programme were eligible. Participants were randomly assigned (1:1) using a centralised validated computer program, to temporarily suspend methotrexate treatment for 2 weeks immediately after COVID-19 booster vaccination or continue treatment as usual. The primary outcome was S1-RBD antibody titres 4 weeks after COVID-19 booster vaccination and was assessed masked to group assignment. All randomly assigned patients were included in primary and safety analyses. This trial is registered with ISRCTN, ISRCTN11442263; following a pre-planned interim analysis, recruitment was stopped early. Finding: Between Sept 30, 2021, and March 7, 2022, we screened 685 individuals, of whom 383 were randomly assigned: to either suspend methotrexate (n=191; mean age 58·8 years [SD 12·5], 118 [62%] women and 73 [38%] men) or to continue methotrexate (n=192; mean age 59·3 years [11·9], 117 [61%] women and 75 [39%] men). At 4 weeks, the geometric mean S1-RBD antibody titre was 25 413 U/mL (95% CI 22 227–29 056) in the suspend methotrexate group and 12 326 U/mL (10 538–14 418) in the continue methotrexate group with a geometric mean ratio (GMR) of 2·08 (95% CI 1·59–2·70; p<0·0001). No intervention-related serious adverse events occurred. Interpretation: 2-week interruption of methotrexate treatment in people with immune-mediated inflammatory diseases enhanced antibody responses after COVID-19 booster vaccination that were sustained at 12 weeks and 26 weeks. There was a temporary increase in inflammatory disease flares, mostly self-managed. The choice to suspend methotrexate should be individualised based on disease status and vulnerability to severe outcomes from COVID-19. Funding: National Institute for Health and Care Research

    SN 2016coi/ASASSN-16fp: an example of residual helium in a type Ic supernova?

    Get PDF
    The optical observations of Ic-4 supernova (SN) 2016coi/ASASSN-16fp, from ∼2 to ∼450  d after explosion, are presented along with analysis of its physical properties. The SN shows the broad lines associated with SNe Ic-3/4 but with a key difference. The early spectra display a strong absorption feature at ∼5400 Å which is not seen in other SNe Ic-3/4 at this epoch. This feature has been attributed to He I in the literature. Spectral modelling of the SN in the early photospheric phase suggests the presence of residual He in a C/O dominated shell. However, the behaviour of the He I lines is unusual when compared with He-rich SNe, showing relatively low velocities and weakening rather than strengthening over time. The SN is found to rise to peak ∼16 d after core-collapse reaching a bolometric luminosity of Lp∼3 × 1042 erg s−1. Spectral models, including the nebular epoch, show that the SN ejected 2.5–4 M⊙ of material, with ∼1.5 M⊙ below 5000 km s−1, and with a kinetic energy of (4.5–7) × 1051 erg. The explosion synthesized ∼0.14 M⊙ of 56Ni. There are significant uncertainties in E(B − V)host and the distance, however, which will affect Lp and MNi. SN 2016coi exploded in a host similar to the Large Magellanic Cloud (LMC) and away from star-forming regions. The properties of the SN and the host-galaxy suggest that the progenitor had MZAMS of 23–28 M⊙ and was stripped almost entirely down to its C/O core at explosion

    The importance of different frailty domains in a population based sample in England

    Get PDF
    Background: The aim was to estimate the prevalence of frailty and relative contribution of physical/balance, nutritive, cognitive and sensory frailty to important adverse health states (falls, physical activity levels, outdoor mobility, problems in self-care or usual activities, and lack of energy or accomplishment) in an English cohort by age and sex. Methods: Analysis of baseline data from a cohort of 9803 community-dwelling participants in a clinical trial. The sample was drawn from a random selection of all people aged 70 or more registered with 63 general practices across England. Data were collected by postal questionnaire. Frailty was measured with the Strawbridge questionnaire. We used cross sectional, multivariate logistic regression to estimate the association between frailty domains and known correlates and adjusted for age. Some models were stratified by sex. Results: Mean age of participants was 78 years (sd 5.7), range 70 to 101 and 47.5% (4653/9803) were men. The prevalence of overall frailty was 20.7% (2005/9671) and there was no difference in prevalence by sex (Odds Ratio 0.98; 95% Confidence Interval 0.89 to 1.08). Sensory frailty was the most common and this was reported by more men (1823/4586) than women (1469/5056; Odds Ratio for sensory frailty 0.62, 95% Confidence Interval 0.57 to 0.68). Men were less likely than women to have physical or nutritive frailty. Physical frailty had the strongest independent associations with adverse health states. However, sensory frailty was independently associated with falls, less frequent walking, problems in self-care and usual activities, lack of energy and accomplishment. Conclusions: Physical frailty was more strongly associated with adverse health states, but sensory frailty was much more common. The health gain from intervention for sensory frailty in England is likely to be substantial, particularly for older men. Sensory frailty should be explored further as an important target of intervention to improve health outcomes for older people both at clinical and population level.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.08/14/41/DH_/Department of Health/United Kingdom Project number 08/14/41/Health Technology Assessment Programmepre-print, post-print, publisher's version/PD

    A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing.

    Get PDF
    As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼ 100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.We thank the DKFZ Genomics and Proteomics Core Facility and the OICR Genome Technologies Platform for provision of sequencing services. Financial support was provided by the consortium projects READNA under grant agreement FP7 Health-F4-2008-201418, ESGI under grant agreement 262055, GEUVADIS under grant agreement 261123 of the European Commission Framework Programme 7, ICGC-CLL through the Spanish Ministry of Science and Innovation (MICINN), the Instituto de Salud Carlos III (ISCIII) and the Generalitat de Catalunya. Additional financial support was provided by the PedBrain Tumor Project contributing to the International Cancer Genome Consortium, funded by German Cancer Aid (109252) and by the German Federal Ministry of Education and Research (BMBF, grants #01KU1201A, MedSys #0315416C and NGFNplus #01GS0883; the Ontario Institute for Cancer Research to PCB and JDM through funding provided by the Government of Ontario, Ministry of Research and Innovation; Genome Canada; the Canada Foundation for Innovation and Prostate Cancer Canada with funding from the Movember Foundation (PCB). PCB was also supported by a Terry Fox Research Institute New Investigator Award, a CIHR New Investigator Award and a Genome Canada Large-Scale Applied Project Contract. The Synergie Lyon Cancer platform has received support from the French National Institute of Cancer (INCa) and from the ABS4NGS ANR project (ANR-11-BINF-0001-06). The ICGC RIKEN study was supported partially by RIKEN President’s Fund 2011, and the supercomputing resource for the RIKEN study was provided by the Human Genome Center, University of Tokyo. MDE, LB, AGL and CLA were supported by Cancer Research UK, the University of Cambridge and Hutchison-Whampoa Limited. SD is supported by the Torres Quevedo subprogram (MI CINN) under grant agreement PTQ-12-05391. EH is supported by the Research Council of Norway under grant agreements 221580 and 218241 and by the Norwegian Cancer Society under grant agreement 71220-PR-2006-0433. Very special thanks go to Jennifer Jennings for administrating the activity of the ICGC Verification Working Group and Anna Borrell for administrative support.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1000

    Production of dust by massive stars at high redshift

    Full text link
    The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z > 6 only stars of relatively high mass (> 3 Msun) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3-40 Msun using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (> 3 Msun) asymptotic giant branch stars can only be dominant dust producers if SNe generate <~ 3 x 10^-3 Msun of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.Comment: 72 pages, 9 figures, 5 tables; to be published in The Astronomy and Astrophysics Revie
    corecore