70 research outputs found

    PARENTS, AND NETWORKS ORDINANCES: DETECTION OF STRUCTURE IN THE INTERACTIVE

    Get PDF
    Neste artigo apresentamos três abordagens usuais para a detecção de padrões em comunidades de plantas e animais que interagem entre si por meio de processos ecológicos como a polinização, a frugivoria ou a herbivoria. Modelos estruturais simples revelam padrões de interação em gradientes, compartimentados ou aninhados; padrões intermediários entre um gradiente e compartimentos também são possíveis. De forma semelhante, o aninhamento no interior de compartimentos gera ainda um modelo estrutural combinado. Os padrões de interação podem ser visualizados e analisados sob a forma de matrizes, redes bipartidas ou gráficos de ordenação obtidos através de uma Análise de Correspondência. Neste trabalho, propomos que as diferenças entre os padrões de interação observados em comunidades representam resultados de diferentes processos ecológicos e evolutivos que atuam sobre tais comunidades. De maneira geral, a compartimentação deveria refletir o histórico da coevolução e os limites impostos às espécies presentes na comunidade, ao passo que diferenças na abundância e na capacidade de dispersão dessas espécies podem gerar uma estrutura aninhada. Portanto, ao invés de ser testada para um modelo estrutural a priori, a estrutura de comunidades ecológicas deve ser confrontada com uma gama inteira de padrões possíveis. Esperamos que as abordagens para a detecção de estruturas em comunidades interativas aqui apresentadas facilitem a elaboração de hipóteses ecológicas mais abrangentes e melhor formuladas.In this paper we present a comprehensive approach to detect structural patterns in interactive communities of plant and animal species, linked by ecological processes such as pollination, frugivory or herbivory. Simple structural models can reveal gradient, compartmented or nested patterns of interaction; intermediate patterns between a gradient and compartments are also possible. Of special potential interest is a combined model, in which nested structures are embedded within compartments. Interaction patterns can be visualized and analyzed in different ways, either as matrices, as bipartite networks or as multivariate sets through correspondence analysis or other ordination procedures. We also propose that differences among patterns represent outcomes of distinct evolutionary and ecological processes that will be especially relevant in highly diversified communities. In general, compartmentation should reflect coevolutionary histories and constraints, whereas differences in species abundances or dispersal rates may generate nestedness. Hence, instead of choosing one model a priori, to be empirically verified, community structure should be probed for a suite of patterns. The comprehensive approach for detecting community structure that we advocate should help to improve ecological hypotheses on compositional patterns in interactive communities, as well as their attendant empirical tests in actual communities.

    AMPLIANDO A DISCUSSÃO SOBRE ECOLOGIA NEOTROPICAL

    Get PDF
    In face of the Brazilian megadiversity, the contribution of Brazilian researchers to the conception of new hypotheses and theories in ecology can still be considered as shy, and this may be one of the main reasons why we have advanced less than we potentially could. In consequence of this reality, the 1st Symposium on Ecological Theory (I SET) took place at the Federal University of Minas Gerais in 2004, aiming to stimulate the concept of new theories by  Brazilian ecologists. In 2006, the 2 nd Symposium on Ecological Theory (II SET) took place at the Federal University of Rio de Janeiro, organized by the Pos Graduation Program in Ecology (PPGE/UFRJ), aiming to give continuity to the fist event, through the discussion of various hypotheses and theories that compose the mosaic of traditional ecology, with emphasis on tropical systems. This article presents a historical perspective of this event and the themes discussed during the event written in a resumed form.Frente à megadiversidade brasileira, pode-se qualificar como ainda tímida a contribuição de pesquisadores do país na geração de novas hipóteses e teorias ecológicas, o que talvez seja uma das principais razões pela qual tenhamos avançado menos do que potencialmente poderíamos. Em face a esta realidade, o I Simpósio de Ecologia Teórica (I SET) foi realizado em 2004, na Universidade Federal de Minas Gerais, com o intuito de incentivar o avanço dos ecólogos brasileiros na elaboração de novas teorias. Em 2006, o Programa de Pós-Graduação em Ecologia da Universidade Federal do Rio de Janeiro (PPGE/UFRJ) organizou o II Simpósio de Ecologia Teórica (II SET) com o objetivo de dar continuidade ao primeiro evento através da discussão das diversas hipóteses e teorias que compõem o mosaico da ecologia tradicional, com enfoque nos sistemas tropicais. Este manuscrito faz um breve apanhado do evento e apresenta resumidamente os demais artigos que constam desta publicação e que foram base para as palestras e mesas redondas

    Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change

    Get PDF
    Forecasts of species range shifts under climate change are fraught with uncertainties and ensemble forecasting may provide a framework to deal with such uncertainties. Here, a novel approach to partition the variance among modeled attributes, such as richness or turnover, and map sources of uncertainty in ensembles of forecasts is presented. We model the distributions of 3837 New World birds and project them into 2080. We then quantify and map the relative contribution of different sources of uncertainty from alternative methods for niche modeling, general circulation models (AOGCM), and emission scenarios. The greatest source of uncertainty in forecasts of species range shifts arises from using alternative methods for niche modeling, followed by AOGCM, and their interaction. Our results concur with previous studies that discovered that projections from alternative models can be extremely varied, but we provide a new analytical framework to examine uncertainties in models by quantifying their importance and mapping their patterns

    Climate Change and American Bullfrog Invasion: What Could We Expect in South America?

    Get PDF
    BACKGROUND: Biological invasion and climate change pose challenges to biodiversity conservation in the 21(st) century. Invasive species modify ecosystem structure and functioning and climatic changes are likely to produce invasive species' range shifts pushing some populations into protected areas. The American Bullfrog (Lithobates catesbeianus) is one of the hundred worst invasive species in the world. Native from the southeast of USA, it has colonized more than 75% of South America where it has been reported as a highly effective predator, competitor and vector of amphibian diseases. METHODOLOGY/PRINCIPAL FINDINGS: We modeled the potential distribution of the bullfrog in its native range based on different climate models and green-house gases emission scenarios, and projected the results onto South America for the years of 2050 and 2080. We also overlaid projected models onto the South American network of protected areas. Our results indicate a slight decrease in potential suitable area for bullfrog invasion, although protected areas will become more climatically suitable. Therefore, invasion of these sites is forecasted. CONCLUSION/SIGNIFICANCE: We provide new evidence supporting the vulnerability of the Atlantic Forest Biodiversity Hotspot to bullfrog invasion and call attention to optimal future climatic conditions of the Andean-Patagonian forest, eastern Paraguay, and northwestern Bolivia, where invasive populations have not been found yet. We recommend several management and policy strategies to control bullfrog invasion and argue that these would be possible if based on appropriate articulation among government agencies, NGOs, research institutions and civil society

    Research priorities for maintaining biodiversity’s contributions to people in Latin America

    Get PDF
    Maintaining biodiversity is crucial for ensuring human well-being. The authors participated in a workshop held in Palenque, Mexico, in August 2018, that brought together 30 mostly early-career scientists working in different disciplines (natural, social and economic sciences) with the aim of identifying research priorities for studying the contributions of biodiversity to people and how these contributions might be impacted by environmental change. Five main groups of questions emerged: (1) Enhancing the quantity, quality, and availability of biodiversity data; (2) Integrating different knowledge systems; (3) Improved methods for integrating diverse data; (4) Fundamental questions in ecology and evolution; and (5) Multi-level governance across boundaries. We discuss the need for increased capacity building and investment in research programmes to address these challenges

    ENM2020 : A FREE ONLINE COURSE AND SET OF RESOURCES ON MODELING SPECIES NICHES AND DISTRIBUTIONS

    Get PDF
    The field of distributional ecology has seen considerable recent attention, particularly surrounding the theory, protocols, and tools for Ecological Niche Modeling (ENM) or Species Distribution Modeling (SDM). Such analyses have grown steadily over the past two decades-including a maturation of relevant theory and key concepts-but methodological consensus has yet to be reached. In response, and following an online course taught in Spanish in 2018, we designed a comprehensive English-language course covering much of the underlying theory and methods currently applied in this broad field. Here, we summarize that course, ENM2020, and provide links by which resources produced for it can be accessed into the future. ENM2020 lasted 43 weeks, with presentations from 52 instructors, who engaged with >2500 participants globally through >14,000 hours of viewing and >90,000 views of instructional video and question-and-answer sessions. Each major topic was introduced by an "Overview" talk, followed by more detailed lectures on subtopics. The hierarchical and modular format of the course permits updates, corrections, or alternative viewpoints, and generally facilitates revision and reuse, including the use of only the Overview lectures for introductory courses. All course materials are free and openly accessible (CC-BY license) to ensure these resources remain available to all interested in distributional ecology.Peer reviewe

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore