304 research outputs found
Mental health academics in rural and remote Australia
Context: The significant impact of mental ill health in rural and remote Australia has been well documented. Included among innovative approaches undertaken to address this issue has been the Mental Health Academic (MHA) project, established in 2007. Funded by the Australian Government (Department of Health), this project was established as a component of the University Departments of Rural Health (UDRH) program. All 11 UDRHs appointed an MHA. Although widely geographically dispersed, the MHAs have collaborated in various ways. The MHA project encompasses a range of activities addressing four key performance indicators. These activities, undertaken in rural and remote Australia, aimed to increase access to mental health services, promote awareness of mental health issues, support students undertaking mental health training and improve health professionals' capacity to recognise and address mental health issues. MHAs were strategically placed within the UDRHs across the country, ensuring an established academic base for the MHAs' work was available immediately. Close association with each local rural community was recognised as important. For most MHAs this was facilitated by having an established clinical role in their local community and actively engaging with the community in which they worked. In common with other rural health initiatives, some difficulties were experienced in the recruitment of suitable MHAs, especially in more remote locations. The genesis of this article was a national meeting of the MHAs in 2014, to identify and map the different types of activities MHAs had undertaken in their regions. These activities were analysed and categorised by the MHAs. These categories have been used as a guiding framework for this article.
Issues: The challenge to increase community access to mental health services was addressed by (i) initiatives to address specific access barriers, (ii) supporting recruitment and retention of rural mental health staff, (iii) developing the skills of the existing workforce and (iv) developing innovative approaches to student placements. Strategies to promote awareness of mental health issues included workshops in rural and remote communities, specific suicide prevention initiatives and targeted initiatives to support the mental health needs of Indigenous Australians. The need for collaboration between the widely dispersed MHAs was identified as important to bridge the rural divide, to promote project cohesiveness and ensure new ideas in an emerging setting are readily shared and to provide professional support for one another as mental health academics are often isolated from academic colleagues with similar mental health interests.
Lessons learned: The MHA project suggests that an integrated approach can be taken to address the common difficulties of community awareness raising of mental health issues, increasing access to mental health services, workforce recruitment and retention (access), and skill development of existing health professionals (access and awareness). To address the specific needs and circumstances of their community, MHAs have customised their activities. As in other rural initiatives, one size was found not to fit all. The triad of flexibility, diversity and connectedness (both to local community and other MHAs) describes the response identified as appropriate by the MHAs. The breadth of the MHA role to provide university sponsored educational activities outside traditional student teaching meant that the broader health workforce benefited from access to mental health training that would not otherwise have occurred. Provision of these additional educational opportunities addressed not only the need for increased education regarding mental health but also reduced the barriers commonly faced by rural health professionals in accessing quality professional development
Time evolution of in vivo articular cartilage repair induced by bone marrow stimulation and scaffold implantation in rabbits
Purpose: Tissue engineering techniques were used to study cartilage repair over a 12-month period in a rabbit model.
Methods: A full-depth chondral defect along with subchondral bone injury were originated in the knee joint, where a biostable porous scaffold was implanted, synthesized of poly(ethyl acrylate-co-hydroxyethyl acrylate) copolymer. Morphological evolution of cartilage repair was studied 1 and 2 weeks, and 1, 3, and 12 months after implantation by histological techniques. The 3-month group was chosen to compare cartilage repair to an additional group where scaffolds were preseeded with allogeneic chondrocytes before implantation, and also to controls, who underwent the same surgery procedure, with no scaffold implantation.
Results: Neotissue growth was first observed in the deepest scaffold pores 1 week after implantation, which spread thereafter; 3 months later scaffold pores were filled mostly with cartilaginous tissue in superficial and middle zones, and with bone tissue adjacent to subchondral bone. Simultaneously, native chondrocytes at the edges of the defect started to proliferate 1 week after implantation; within a month those edges had grown centripetally and seemed to embed the scaffold, and after 3 months, hyaline-like cartilage was observed on the condylar surface. Preseeded scaffolds slightly improved tissue growth, although the quality of repair tissue was similar to non-preseeded scaffolds. Controls showed that fibrous cartilage was mainly filling the repair area 3 months after surgery. In the 12-month group, articular cartilage resembled the untreated surface.
Conclusions: Scaffolds guided cartilaginous tissue growth in vivo, suggesting their importance in stress transmission to the cells for cartilage repair.This study was supported by the Spanish Ministry of Science and Innovation through MAT2010-21611-C03-00 project (including the FEDER financial support), by Conselleria de Educacion (Generalitat Valenciana, Spain) PROMETEO/2011/084 grant, and by CIBER-BBN en Bioingenieria, Biomateriales y Nanomedicina. The work of JLGR was partially supported by funds from the Generalitat Valenciana, ACOMP/2012/075 project. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the - Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Sancho-Tello Valls, M.; Forriol, F.; Gastaldi, P.; Ruiz Sauri, A.; Martín De Llano, JJ.; Novella-Maestre, E.; Antolinos Turpín, CM.... (2015). Time evolution of in vivo articular cartilage repair induced by bone marrow stimulation and scaffold implantation in rabbits. International Journal of Artificial Organs. 38(4):210-223. https://doi.org/10.5301/ijao.5000404S210223384Becerra, J., Andrades, J. A., Guerado, E., Zamora-Navas, P., López-Puertas, J. M., & Reddi, A. H. (2010). Articular Cartilage: Structure and Regeneration. Tissue Engineering Part B: Reviews, 16(6), 617-627. doi:10.1089/ten.teb.2010.0191Nelson, L., Fairclough, J., & Archer, C. (2009). Use of stem cells in the biological repair of articular cartilage. Expert Opinion on Biological Therapy, 10(1), 43-55. doi:10.1517/14712590903321470MAINIL-VARLET, P., AIGNER, T., BRITTBERG, M., BULLOUGH, P., HOLLANDER, A., HUNZIKER, E., … STAUFFER, E. (2003). HISTOLOGICAL ASSESSMENT OF CARTILAGE REPAIR. The Journal of Bone and Joint Surgery-American Volume, 85, 45-57. doi:10.2106/00004623-200300002-00007Hunziker, E. B., Kapfinger, E., & Geiss, J. (2007). The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis and Cartilage, 15(4), 403-413. doi:10.1016/j.joca.2006.09.010Onyekwelu, I., Goldring, M. B., & Hidaka, C. (2009). Chondrogenesis, joint formation, and articular cartilage regeneration. Journal of Cellular Biochemistry, 107(3), 383-392. doi:10.1002/jcb.22149Ahmed, T. A. E., & Hincke, M. T. (2010). Strategies for Articular Cartilage Lesion Repair and Functional Restoration. Tissue Engineering Part B: Reviews, 16(3), 305-329. doi:10.1089/ten.teb.2009.0590Hangody, L., Kish, G., Kárpáti, Z., Udvarhelyi, I., Szigeti, I., & Bély, M. (1998). Mosaicplasty for the Treatment of Articular Cartilage Defects: Application in Clinical Practice. Orthopedics, 21(7), 751-756. doi:10.3928/0147-7447-19980701-04Steinwachs, M. R., Guggi, T., & Kreuz, P. C. (2008). Marrow stimulation techniques. Injury, 39(1), 26-31. doi:10.1016/j.injury.2008.01.042Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. New England Journal of Medicine, 331(14), 889-895. doi:10.1056/nejm199410063311401Richter, W. (2009). Mesenchymal stem cells and cartilagein situregeneration. Journal of Internal Medicine, 266(4), 390-405. doi:10.1111/j.1365-2796.2009.02153.xBartlett, W., Skinner, J. A., Gooding, C. R., Carrington, R. W. J., Flanagan, A. M., Briggs, T. W. R., & Bentley, G. (2005). Autologous chondrocyte implantationversusmatrix-induced autologous chondrocyte implantation for osteochondral defects of the knee. The Journal of Bone and Joint Surgery. British volume, 87-B(5), 640-645. doi:10.1302/0301-620x.87b5.15905Little, C. J., Bawolin, N. K., & Chen, X. (2011). Mechanical Properties of Natural Cartilage and Tissue-Engineered Constructs. Tissue Engineering Part B: Reviews, 17(4), 213-227. doi:10.1089/ten.teb.2010.0572Vikingsson, L., Gallego Ferrer, G., Gómez-Tejedor, J. A., & Gómez Ribelles, J. L. (2014). An «in vitro» experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 32, 125-131. doi:10.1016/j.jmbbm.2013.12.024Weber, J. F., & Waldman, S. D. (2014). Calcium signaling as a novel method to optimize the biosynthetic response of chondrocytes to dynamic mechanical loading. Biomechanics and Modeling in Mechanobiology, 13(6), 1387-1397. doi:10.1007/s10237-014-0580-xMauck, R. L., Soltz, M. A., Wang, C. C. B., Wong, D. D., Chao, P.-H. G., Valhmu, W. B., … Ateshian, G. A. (2000). Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels. Journal of Biomechanical Engineering, 122(3), 252-260. doi:10.1115/1.429656Palmoski, M. J., & Brandt, K. D. (1984). Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis & Rheumatism, 27(6), 675-681. doi:10.1002/art.1780270611Khoshgoftar, M., Ito, K., & van Donkelaar, C. C. (2014). The Influence of Cell-Matrix Attachment and Matrix Development on the Micromechanical Environment of the Chondrocyte in Tissue-Engineered Cartilage. Tissue Engineering Part A, 20(23-24), 3112-3121. doi:10.1089/ten.tea.2013.0676Agrawal, C. M., & Ray, R. B. (2001). Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Materials Research, 55(2), 141-150. doi:10.1002/1097-4636(200105)55:23.0.co;2-jPérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030Horbett, T. A., & Schway, M. B. (1988). Correlations between mouse 3T3 cell spreading and serum fibronectin adsorption on glass and hydroxyethylmethacrylate-ethylmethacrylate copolymers. Journal of Biomedical Materials Research, 22(9), 763-793. doi:10.1002/jbm.820220903Kiremitçi, M., Peşmen, A., Pulat, M., & Gürhan, I. (1993). Relationship of Surface Characteristics to Cellular Attachment in PU and PHEMA. Journal of Biomaterials Applications, 7(3), 250-264. doi:10.1177/088532829300700304Lydon, M. ., Minett, T. ., & Tighe, B. . (1985). Cellular interactions with synthetic polymer surfaces in culture. Biomaterials, 6(6), 396-402. doi:10.1016/0142-9612(85)90100-0Campillo-Fernandez, A. J., Pastor, S., Abad-Collado, M., Bataille, L., Gomez-Ribelles, J. L., Meseguer-Dueñas, J. M., … Ruiz-Moreno, J. M. (2007). Future Design of a New Keratoprosthesis. Physical and Biological Analysis of Polymeric Substrates for Epithelial Cell Growth. Biomacromolecules, 8(8), 2429-2436. doi:10.1021/bm0703012Funayama, A., Niki, Y., Matsumoto, H., Maeno, S., Yatabe, T., Morioka, H., … Toyama, Y. (2008). Repair of full-thickness articular cartilage defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit model. Journal of Orthopaedic Science, 13(3), 225-232. doi:10.1007/s00776-008-1220-zKitahara, S., Nakagawa, K., Sah, R. L., Wada, Y., Ogawa, T., Moriya, H., & Masuda, K. (2008). In Vivo Maturation of Scaffold-free Engineered Articular Cartilage on Hydroxyapatite. Tissue Engineering Part A, 14(11), 1905-1913. doi:10.1089/ten.tea.2006.0419Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448Wang, Y., Bian, Y.-Z., Wu, Q., & Chen, G.-Q. (2008). Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials, 29(19), 2858-2868. doi:10.1016/j.biomaterials.2008.03.021Alió del Barrio, J. L., Chiesa, M., Gallego Ferrer, G., Garagorri, N., Briz, N., Fernandez-Delgado, J., … De Miguel, M. P. (2014). Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experimental animal model. Journal of Biomedical Materials Research Part A, 103(3), 1106-1118. doi:10.1002/jbm.a.35249Diego, R. B., Olmedilla, M. P., Aroca, A. S., Ribelles, J. L. G., Pradas, M. M., Ferrer, G. G., & Sánchez, M. S. (2005). Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science: Materials in Medicine, 16(8), 693-698. doi:10.1007/s10856-005-2604-7Serrano Aroca, A., Campillo Fernández, A. J., Gómez Ribelles, J. L., Monleón Pradas, M., Gallego Ferrer, G., & Pissis, P. (2004). Porous poly(2-hydroxyethyl acrylate) hydrogels prepared by radical polymerisation with methanol as diluent. Polymer, 45(26), 8949-8955. doi:10.1016/j.polymer.2004.10.033Diani, J., Fayolle, B., & Gilormini, P. (2009). A review on the Mullins effect. European Polymer Journal, 45(3), 601-612. doi:10.1016/j.eurpolymj.2008.11.017Mullins, L. (1969). Softening of Rubber by Deformation. Rubber Chemistry and Technology, 42(1), 339-362. doi:10.5254/1.3539210Jurvelin, J. S., Buschmann, M. D., & Hunziker, E. B. (2003). Mechanical anisotropy of the human knee articular cartilage in compression. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 217(3), 215-219. doi:10.1243/095441103765212712Shapiro, F., Koide, S., & Glimcher, M. J. (1993). Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. The Journal of Bone & Joint Surgery, 75(4), 532-553. doi:10.2106/00004623-199304000-00009SELLERS, R. S., ZHANG, R., GLASSON, S. S., KIM, H. D., PELUSO, D., D’AUGUSTA, D. A., … MORRIS, E. A. (2000). Repair of Articular Cartilage Defects One Year After Treatment with Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2)*. The Journal of Bone and Joint Surgery-American Volume, 82(2), 151-160. doi:10.2106/00004623-200002000-00001Hunziker, E. B., Michel, M., & Studer, D. (1997). Ultrastructure of adult human articular cartilage matrix after cryotechnical processing. Microscopy Research and Technique, 37(4), 271-284. doi:10.1002/(sici)1097-0029(19970515)37:43.0.co;2-oAppelman, T. P., Mizrahi, J., Elisseeff, J. H., & Seliktar, D. (2009). The differential effect of scaffold composition and architecture on chondrocyte response to mechanical stimulation. Biomaterials, 30(4), 518-525. doi:10.1016/j.biomaterials.2008.09.063Chung, C., & Burdick, J. A. (2008). Engineering cartilage tissue. Advanced Drug Delivery Reviews, 60(2), 243-262. doi:10.1016/j.addr.2007.08.027HUNZIKER, E. B., & ROSENBERG, L. C. (1996). Repair of Partial-Thickness Defects in Articular Cartilage. The Journal of Bone & Joint Surgery, 78(5), 721-33. doi:10.2106/00004623-199605000-00012Schulze-Tanzil, G. (2009). Activation and dedifferentiation of chondrocytes: Implications in cartilage injury and repair. Annals of Anatomy - Anatomischer Anzeiger, 191(4), 325-338. doi:10.1016/j.aanat.2009.05.003Umlauf, D., Frank, S., Pap, T., & Bertrand, J. (2010). Cartilage biology, pathology, and repair. Cellular and Molecular Life Sciences, 67(24), 4197-4211. doi:10.1007/s00018-010-0498-0Karystinou, A., Dell’Accio, F., Kurth, T. B. A., Wackerhage, H., Khan, I. M., Archer, C. W., … De Bari, C. (2009). Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology, 48(9), 1057-1064. doi:10.1093/rheumatology/kep192Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis & Rheumatism, 52(8), 2521-2529. doi:10.1002/art.21212Schaefer, D., Martin, I., Jundt, G., Seidel, J., Heberer, M., Grodzinsky, A., … Freed, L. E. (2002). Tissue-engineered composites for the repair of large osteochondral defects. Arthritis & Rheumatism, 46(9), 2524-2534. doi:10.1002/art.1049
Monitoring boreal forest biomass and carbon storage change by integrating airborne laser scanning, biometry and eddy covariance data
AbstractThis study presents a comparison and integration of three methods commonly used to estimate the amount of forest ecosystem carbon (C) available for storage. In particular, we examine the representation of living above- and below-ground biomass change (net accumulation) using plot-level biometry and repeat airborne laser scanning (ALS) of three dimensional forest plot structure. These are compared with cumulative net CO2 fluxes (net ecosystem production, NEP) from eddy covariance (EC) over a six-year period within a jack pine chronosequence of four stands (~94, 30, 14 and 3years since establishment from 2005) located in central Saskatchewan, Canada. Combining the results of the two methods yield valuable observations on the partitioning of C within ecosystems. Subtracting total living biomass C accumulation from NEP results in a residual that represents change in soil and litter C storage. When plotted against time for the stands investigated, the curve produced is analogous to the soil C dynamics described in Covington (1981). Here, ALS biomass accumulation exceeds EC-based NEP measured in young stands, with the residual declining with age as stands regenerate and litter decomposition stabilizes. During the 50–70year age-period, NEP and live biomass accumulation come into balance, with the soil and litter pools of stands 70–100years post-disturbance becoming a net store of C. Biomass accumulation was greater in 2008–2011 compared to 2005–2008, with the smallest increase in the 94-year-old “old jack pine” stand and greatest in the 14-year-old “harvested jack pine 1994” stand, with values of 1.4 (±3.2) tCha−1 and 12.0 (±1.6) tCha−1, respectively. The efficiency with which CO2 was stored in accumulated biomass was lowest in the youngest and oldest stands, but peaked during rapid regeneration following harvest (14-year-old stand). The analysis highlights that the primary source of uncertainty in the data integration workflow is in the calculation of biomass expansion factors, and this aspect of the workflow needs to be implemented with caution to avoid large error propagations. We suggest that the adoption of integrated ALS, in situ and atmospheric flux monitoring frameworks is needed to improve spatio-temporal partitioning of C balance components at sub-decadal scale within rapidly changing forest ecosystems and for use in national carbon accounting programs
Searches for lepton-flavour-violating decays of the Higgs boson in TeV collisions with the ATLAS detector
This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and
H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample
of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated
luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard
Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio
Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector
This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 < kappa(lambda) < 12.0 (-5.8 < kappa(lambda) < 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p
Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb⁻¹ of pp collisions at \sqrts = 13 TeV with the ATLAS experiment
A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5). © 2019 The Author(s
Comparison between simulated and observed LHC beam backgrounds in the ATLAS experiment at Ebeam =4 TeV
Results of dedicated Monte Carlo simulations of beam-induced background (BIB) in the ATLAS experiment at the Large Hadron Collider (LHC) are presented and compared with data recorded in 2012. During normal physics operation this background arises mainly from scattering of the 4 TeV protons on residual gas in the beam pipe. Methods of reconstructing the BIB signals in the ATLAS detector, developed and implemented in the simulation chain based on the \textscFluka Monte Carlo simulation package, are described. The interaction rates are determined from the residual gas pressure distribution in the LHC ring in order to set an absolute scale on the predicted rates of BIB so that they can be compared quantitatively with data. Through these comparisons the origins of the BIB leading to different observables in the ATLAS detectors are analysed. The level of agreement between simulation results and BIB measurements by ATLAS in 2012 demonstrates that a good understanding of the origin of BIB has been reached
Search for low-mass resonances decaying into two jets and produced in association with a photon using pp collisions at s=13 TeV with the ATLAS detector
A search is performed for localised excesses in dijet mass distributions of low-dijet-mass events produced in association with a high transverse energy photon. The search uses up to 79.8 fb−1 of LHC proton–proton collisions collected by the ATLAS experiment at a centre-of-mass energy of 13 TeV during 2015–2017. Two variants are presented: one which makes no jet flavour requirements and one which requires both jets to be tagged as b-jets. The observed mass distributions are consistent with multi-jet processes in the Standard Model. The data are used to set upper limits on the production cross-section for a benchmark model and, separately, on generic Gaussian-shape contributions to the mass distributions, extending the current ATLAS constraints on dijet resonances to the mass range between 225 and 1100 GeV.We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, Canarie, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.info:eu-repo/semantics/publishedVersio
- …