123 research outputs found
Effectiveness of CoronaVac, ChAdOx1 nCoV-19, BNT162b2, and Ad26.COV2.S among individuals with previous SARS-CoV-2 infection in Brazil: a test-negative, case-control study.
BACKGROUND: COVID-19 vaccines have proven highly effective among individuals without a previous SARS-CoV-2 infection, but their effectiveness in preventing symptomatic infection and severe outcomes among individuals with previous infection is less clear. We aimed to estimate the effectiveness of four COVID-19 vaccines against symptomatic infection, hospitalisation, and death for individuals with laboratory-confirmed previous SARS-CoV-2 infection. METHODS: Using national COVID-19 notification, hospitalisation, and vaccination datasets from Brazil, we did a test-negative, case-control study to assess the effectiveness of four vaccines (CoronaVac [Sinovac], ChAdOx1 nCoV-19 [AstraZeneca], Ad26.COV2.S [Janssen], and BNT162b2 [Pfizer-BioNtech]) for individuals with laboratory-confirmed previous SARS-CoV-2 infection. We matched cases with RT-PCR positive, symptomatic COVID-19 with up to ten controls with negative RT-PCR tests who presented with symptomatic illnesses, restricting both groups to tests done at least 90 days after an initial infection. We used multivariable conditional logistic regression to compare the odds of test positivity and the odds of hospitalisation or death due to COVID-19, according to vaccination status and time since first or second dose of vaccines. FINDINGS: Between Feb 24, 2020, and Nov 11, 2021, we identified 213 457 individuals who had a subsequent, symptomatic illness with RT-PCR testing done at least 90 days after their initial SARS-CoV-2 infection and after the vaccination programme started. Among these, 30 910 (14·5%) had a positive RT-PCR test consistent with reinfection, and we matched 22 566 of these cases with 145 055 negative RT-PCR tests from 68 426 individuals as controls. Among individuals with previous SARS-CoV-2 infection, vaccine effectiveness against symptomatic infection 14 or more days from vaccine series completion was 39·4% (95% CI 36·1-42·6) for CoronaVac, 56·0% (51·4-60·2) for ChAdOx1 nCoV-19, 44·0% (31·5-54·2) for Ad26.COV2.S, and 64·8% (54·9-72·4) for BNT162b2. For the two-dose vaccine series (CoronaVac, ChAdOx1 nCoV-19, and BNT162b2), effectiveness against symptomatic infection was significantly greater after the second dose than after the first dose. Effectiveness against hospitalisation or death 14 or more days from vaccine series completion was 81·3% (75·3-85·8) for CoronaVac, 89·9% (83·5-93·8) for ChAdOx1 nCoV-19, 57·7% (-2·6 to 82·5) for Ad26.COV2.S, and 89·7% (54·3-97·7) for BNT162b2. INTERPRETATION: All four vaccines conferred additional protection against symptomatic infections and severe outcomes among individuals with previous SARS-CoV-2 infection. The provision of a full vaccine series to individuals after recovery from COVID-19 might reduce morbidity and mortality. FUNDING: Brazilian National Research Council, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Oswaldo Cruz Foundation, JBS, Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation, and Generalitat de Catalunya
Genetic correlations and genome-wide associations of cortical structure in general population samples of 22824 adults
Cortical thickness, surface area and volumes vary with age and cognitive function, and in neurological and psychiatric diseases. Here we report heritability, genetic correlations and genome-wide associations of these cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprises 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank. We identify genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There is enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging
Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects
Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
A large-scale genome-wide association study meta-analysis of cannabis use disorder
Summary Background Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50–70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. Methods To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. Findings We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07–1·15, p=1·84 × 10−9) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0·86–0·93, p=6·46 × 10−9). Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50 × 10−21), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. Interpretation These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. Funding National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Services Administration (SAMHSA); National Institute of Biomedical Imaging and Bioengineering; National Health and Medical Research Council (NHMRC) Australia; Tobacco-Related Disease Research Program of the University of California; Families for Borderline Personality Disorder Research (Beth and Rob Elliott) 2018 NARSAD Young Investigator Grant; The National Child Health Research Foundation (Cure Kids); The Canterbury Medical Research Foundation; The New Zealand Lottery Grants Board; The University of Otago; The Carney Centre for Pharmacogenomics; The James Hume Bequest Fund; National Institutes of Health: Genes, Environment and Health Initiative; National Institutes of Health; National Cancer Institute; The William T Grant Foundation; Australian Research Council; The Virginia Tobacco Settlement Foundation; The VISN 1 and VISN 4 Mental Illness Research, Education, and Clinical Centers of the US Department of Veterans Affairs; The 5th Framework Programme (FP-5) GenomEUtwin Project; The Lundbeck Foundation; NIH-funded Shared Instrumentation Grant S10RR025141; Clinical Translational Sciences Award grants; National Institute of Neurological Disorders and Stroke; National Heart, Lung, and Blood Institute; National Institute of General Medical Sciences.Peer reviewe
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016
Background A key component of achieving universal health coverage is ensuring that all populations have access to
quality health care. Examining where gains have occurred or progress has faltered across and within countries is
crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries,
and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access
and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from
1990 to 2016.
Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which
death should not occur in the presence of effective care to approximate personal health-care access and quality by
location and over time. To better isolate potential effects of personal health-care access and quality from underlying
risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local
joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion
of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised
death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We
transformed each cause to a scale of 0–100, with 0 as the first percentile (worst) observed between 1990 and 2016, and
100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational
locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values,
providing an overall score of 0–100 of personal health-care access and quality by location over time. We then compared
HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall
development. As derived from the broader GBD study and other data sources, we examined relationships between
national HAQ Index scores and potential correlates of performance, such as total health spending per capita.
Findings In 2016, HAQ Index performance spanned from a high of 97·1 (95% UI 95·8–98·1) in Iceland, followed by
96·6 (94·9–97·9) in Norway and 96·1 (94·5–97·3) in the Netherlands, to values as low as 18·6 (13·1–24·4) in
the Central African Republic, 19·0 (14·3–23·7) in Somalia, and 23·4 (20·2–26·8) in Guinea-Bissau. The pace of
progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and
2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and
elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000.
Striking subnational disparities emerged in personal health-care access and quality, with China and India having
particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged
from 91·5 (89·1–93·6) in Beijing to 48·0 (43·4–53·2) in Tibet (a 43·5-point difference), while India saw a 30·8-point
disparity, from 64·8 (59·6–68·8) in Goa to 34·0 (30·3–38·1) in Assam. Japan recorded the smallest range in
subnational HAQ performance in 2016 (a 4·8-point difference), whereas differences between subnational locations
with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high
for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20·9-point
to 17·0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17·2-point
to 20·4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high
and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases.
Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from
2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was
positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these
relationships were quite heterogeneous, particularly among low-to-middle SDI countries.
Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving
personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle-
SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or
minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities
of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium
Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health
coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive
view—and subsequent provision—of quality health care for all populations.info:eu-repo/semantics/publishedVersio
Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies
First published: 16 February 202
Hair Cortisol in Twins : Heritability and Genetic Overlap with Psychological Variables and Stress-System Genes
A. Palotie on työryhmän jäsen.Hair cortisol concentration (HCC) is a promising measure of long-term hypothalamus-pituitary-adrenal (HPA) axis activity. Previous research has suggested an association between HCC and psychological variables, and initial studies of inter-individual variance in HCC have implicated genetic factors. However, whether HCC and psychological variables share genetic risk factors remains unclear. The aims of the present twin study were to: (i) assess the heritability of HCC; (ii) estimate the phenotypic and genetic correlation between HPA axis activity and the psychological variables perceived stress, depressive symptoms, and neuroticism; using formal genetic twin models and molecular genetic methods, i.e. polygenic risk scores (PRS). HCC was measured in 671 adolescents and young adults. These included 115 monozygotic and 183 dizygotic twin-pairs. For 432 subjects PRS scores for plasma cortisol, major depression, and neuroticism were calculated using data from large genome wide association studies. The twin model revealed a heritability for HCC of 72%. No significant phenotypic or genetic correlation was found between HCC and the three psychological variables of interest. PRS did not explain variance in HCC. The present data suggest that HCC is highly heritable. However, the data do not support a strong biological link between HCC and any of the investigated psychological variables.Peer reviewe
Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment
Background: High blood pressure, blood glucose, serum cholesterol, and BMI are risk factors for cardiovascular diseases and some of these factors also increase the risk of chronic kidney disease and diabetes. We estimated mortality from cardiovascular diseases, chronic kidney disease, and diabetes that was attributable to these four cardiometabolic risk factors for all countries and regions from 1980 to 2010. Methods: We used data for exposure to risk factors by country, age group, and sex from pooled analyses of population-based health surveys. We obtained relative risks for the effects of risk factors on cause-specific mortality from meta-analyses of large prospective studies. We calculated the population attributable fractions for each risk factor alone, and for the combination of all risk factors, accounting for multicausality and for mediation of the effects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specific population attributable fractions by the number of disease-specific deaths. We obtained cause-specific mortality from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all the inputs to the final estimates. Findings: In 2010, high blood pressure was the leading risk factor for deaths due to cardiovascular diseases, chronic kidney disease, and diabetes in every region, causing more than 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths, and high cholesterol for more than 10%. After accounting for multicausality, 63% (10·8 million deaths, 95% CI 10·1-11·5) of deaths from these diseases in 2010 were attributable to the combined effect of these four metabolic risk factors, compared with 67% (7·1 million deaths, 6·6-7·6) in 1980. The mortality burden of high BMI and glucose nearly doubled from 1980 to 2010. At the country level, age-standardised death rates from these diseases attributable to the combined effects of these four risk factors surpassed 925 deaths per 100 000 for men in Belarus, Kazakhstan, and Mongolia, but were less than 130 deaths per 100 000 for women and less than 200 for men in some high-income countries including Australia, Canada, France, Japan, the Netherlands, Singapore, South Korea, and Spain. Interpretation: The salient features of the cardiometabolic disease and risk factor epidemic at the beginning of the 21st century are high blood pressure and an increasing effect of obesity and diabetes. The mortality burden of cardiometabolic risk factors has shifted from high-income to low-income and middle-income countries. Lowering cardiometabolic risks through dietary, behavioural, and pharmacological interventions should be a part of the global response to non-communicable diseases. Funding: UK Medical Research Council, US National Institutes of Health. © 2014 Elsevier Ltd
- …