310 research outputs found

    Differential expression of α-synuclein splice variants in the brain of alcohol misusers: Influence of genotype

    Get PDF
    Background: Chronic alcohol misuse causes damage in the central nervous system that may lead to tolerance, craving and dependence. These behavioural changes are likely the result of cellular adaptations that include changes in gene expression. α-Synuclein is involved in the dopaminergic reward pathway, where it regulates dopamine synthesis and release. Previous studies have found that the gene for α-synuclein, SNCA, is differentially expressed in alcohol misusers. Methods: The present study measured the expression of three α-synuclein variants, SNCA-140, SNCA-112, and SNCA-115 in the prefrontal cortex of controls and alcohol misusers with and without cirrhosis of the liver. In addition, eight SNPs located in the 5'- and 3'-UTRs were genotyped in a Caucasian population of 125 controls and 115 alcohol misusers. Results: The expression of SNCA-140 and SNCA-112 was significantly lower in alcohol misusers with cirrhosis than in controls. However, SNCA-115 expression was significantly greater in alcohol misusers with cirrhosis than in controls. Allele and genotype frequencies differed significantly between alcohol misusers and controls for three SNPs, rs356221, rs356219 and rs2736995. Two SNPs, rs356221 and rs356219, were in high linkage disequilibrium. There was no increased risk of alcoholism associated with specific genotypes or haplotypes. Our results suggest that the rs356219/356221 G-A haplotype may decrease the chance of having an alcohol misuse phenotype. Conclusion: These findings suggest that alcohol misuse may alter the expression of the individual α-synuclein splice variants differently in human brain. There was no evidence of an effect of sequence variation on the expression of α-synuclein splice variants in this population

    Ethanol down regulates the expression of myelin proteolipid protein in the rat hippocampus

    Get PDF
    It is well known that chronic ethanol treatment affects the synthesis of RNA and protein in the brain and the maintenance and function of nervous system. The changes in myelination-related genes are most prominent in human alcoholics. Previously, our cDNA microarray study showed altered Proteolipid protein (PLP), a major protein of central myelin. The present study aimed to gain more understanding of the expression of PLP after chronic ethanol treatment. Male Sprague-Dawley rats were daily treated with ethanol (15% in saline, 3 g/kg, i.p.) or saline for 14 days. Messenger RNAs from hippocampus of each group were subjected to cDNA expression array hybridization to determine the differential gene expressions. Among many ethanol responsive genes, PLP was negatively regulated by ethanol treatment, which is one of the most abundant proteins in the CNS and has an important role in the stabilization of myelin sheath. Using northern blot and immunohistochemical analysis, we showed the change in expression level of PLP mRNA and protein after ethanol treatment. PLP mRNA and protein were decreased in hippocampus of rat with chronic ethanol exposure, suggesting that ethanol may affect the stabilization of myelin sheath through the modulation of PLP expression and induce the pathophysiology of alcoholic brain

    The Importance of Brain Banks for Molecular Neuropathological Research: The New South Wales Tissue Resource Centre Experience

    Get PDF
    New developments in molecular neuropathology have evoked increased demands for postmortem human brain tissue. The New South Wales Tissue Resource Centre (TRC) at The University of Sydney has grown from a small tissue collection into one of the leading international brain banking facilities, which operates with best practice and quality control protocols. The focus of this tissue collection is on schizophrenia and allied disorders, alcohol use disorders and controls. This review highlights changes in TRC operational procedures dictated by modern neuroscience, and provides examples of applications of modern molecular techniques to study the neuropathogenesis of many different brain disorders

    A Single Nucleotide Polymorphism in the RASGRF2 Gene Is Associated with Alcoholic Liver Cirrhosis in Men

    Get PDF
    Background Genetic polymorphisms in the RAS gene family are associated with different diseases, which may include alcohol-related disorders. Previous studies showed an association of the allelic variant rs26907 in RASGRF2 gene with higher alcohol intake. Additionally, the rs61764370 polymorphism in the KRAS gene is located in a binding site for the let-7 micro-RNA family, which is potentially involved in alcohol-induced inflammation. Therefore, this study was designed to explore the association between these two polymorphisms and susceptibility to alcoholism or alcoholic liver disease (ALD). Methods We enrolled 301 male alcoholic patients and 156 healthy male volunteers in this study. Polymorphisms were genotyped by using TaqMan® PCR assays for allelic discrimination. Allelic and genotypic frequencies were compared between the two groups. Logistic regression analysis was performed to analyze the inheritance model. Results The A allele of the RASGRF2 polymorphism (rs26907) was significantly more prevalent among alcoholic patients with cirrhosis (23.2%) compared to alcoholic patients without ALD (14.2%). This difference remained significant in the group of patients with alcohol dependence (28.8% vs. 14.3%) but not in those with alcohol abuse (15.1% vs. 14.4%). Multivariable logistic regression analysis showed that the A allele of this polymorphism (AA or GA genotype) was associated with alcoholic cirrhosis both in the total group of alcoholics (odds ratio [OR]: 2.33, 95% confidence interval [CI]: 1.32–4.11; P = 0.002) and in the group of patients with alcohol dependence (OR: 3.1, 95% CI: 1.50–6.20; P = 0.001). Allelic distributions of the KRAS polymorphism (rs61764370) did not differ between the groups. Conclusions To our knowledge, this genetic association study represents the first to show an association of the RASGRF2 G>A (rs26907) polymorphism with ALD in men, particularly in the subgroup of patients with AD. The findings suggest the potential relevance of the RAS gene family in alcoholism and ALD

    Design of a custom RT-qPCR array for assignement of abiotic stress tolerance in traditional portuguese grapevine varieties

    Get PDF
    Original ResearchWidespread agricultural losses attributed to drought, often combined with high temperatures, frequently occur in the field, namely in Mediterranean climate areas, where the existing scenarios for climate change indicate an increase in the frequency of heat waves and severe drought events in summer. Grapevine (Vitis vinifera L.) is the most cultivated fruit species in the world and the most valuable one and is a traditional Mediterranean species. Currently, viticulture must adjust to impending climate changes that are already pushing vine-growers toward the use of ancient and resilient varieties. Portugal is very rich in grapevine biodiversity, however, currently, 90% of the total producing area is planted with only 16 varieties. There is a pressing need to understand the existing genetic diversity and the physiological potential of the varieties/genotypes available to be able to respond to climate changes. With the above scenario in mind, an assembly of 65 differentially expresses genes (DEGs) previously identified as responsive to abiotic stresses in two well studied genotypes, ‘Touriga Nacional’ and ‘Trincadeira,’ was designed to scan the gene expression of leaf samples from 10 traditional Portuguese varieties growing in two regions with distinct environmental conditions. Forty-five of those DEGs proved to be associated to “abiotic stress” and were chosen to build a custom qPCR array to identify uncharacterized genotypes as sensitive or tolerant to abiotic stress. According to the experimental set-up behind the array design these DEGs can also be used as indicators of the main abiotic stress that the plant is subjected and responding to (drought, heat, or excess lightinfo:eu-repo/semantics/publishedVersio

    Alcohol-related brain damage in humans

    Get PDF
    Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann’s area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE) proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin β II, and α- and β-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in α-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in β-spectrin protein levels, and a significant increase in transmembranous α3 (catalytic) subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of α-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic α- and β-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics

    NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of microglia causes the production of proinflammatory factors and upregulation of NADPH oxidase (NOX) that form reactive oxygen species (ROS) that lead to neurodegeneration. Previously, we reported that 10 daily doses of ethanol treatment induced innate immune genes in brain. In the present study, we investigate the effects of chronic ethanol on activation of NOX and release of ROS, and their contribution to ethanol neurotoxicity.</p> <p>Methods</p> <p>Male C57BL/6 and NF-κB enhanced GFP mice were treated intragastrically with water or ethanol (5 g/kg, i.g., 25% ethanol w/v) daily for 10 days. The effects of chronic ethanol on cell death markers (activated caspase-3 and Fluoro-Jade B), microglial morphology, NOX, ROS and NF-κB were examined using real-time PCR, immunohistochemistry and hydroethidine histochemistry. Also, Fluoro-Jade B staining and NOX gp91<sup>phox </sup>immunohistochemistry were performed in the orbitofrontal cortex (OFC) of human postmortem alcoholic brain and human moderate drinking control brain.</p> <p>Results</p> <p>Ethanol treatment of C57BL/6 mice showed increased markers of neuronal death: activated caspase-3 and Fluoro-Jade B positive staining with Neu-N (a neuronal marker) labeling in cortex and dentate gyrus. The OFC of human post-mortem alcoholic brain also showed significantly more Fluoro-Jade B positive cells colocalized with Neu-N, a neuronal marker, compared to the OFC of human moderate drinking control brain, suggesting increased neuronal death in the OFC of human alcoholic brain. Iba1 and GFAP immunohistochemistry showed activated morphology of microglia and astrocytes in ethanol-treated mouse brain. Ethanol treatment increased NF-κB transcription and increased NOX gp91<sup>phox </sup>at 24 hr after the last ethanol treatment that remained elevated at 1 week. The OFC of human postmortem alcoholic brain also had significant increases in the number of gp91<sup>phox </sup>+ immunoreactive (IR) cells that are colocalized with neuronal, microglial and astrocyte markers. In mouse brain ethanol increased gp91<sup>phox </sup>expression coincided with increased production of O<sub>2</sub><sup>- </sup>and O<sub>2</sub><sup>- </sup>- derived oxidants. Diphenyleneiodonium (DPI), a NOX inhibitor, reduced markers of neurodegeneration, ROS and microglial activation.</p> <p>Conclusions</p> <p>Ethanol activation of microglia and astrocytes, induction of NOX and production of ROS contribute to chronic ethanol-induced neurotoxicity. NOX-ROS and NF-κB signaling pathways play important roles in chronic ethanol-induced neuroinflammation and neurodegeneration.</p

    Molecular targets of alcohol action: translational research for pharmacotherapy development and screening.

    Get PDF
    Alcohol abuse and dependence are multifaceted disorders with neurobiological, psychological, and environmental components. Research on other complex neuropsychiatric diseases suggests that genetically influenced intermediate characteristics affect the risk for heavy alcohol consumption and its consequences. Diverse therapeutic interventions can be developed through identification of reliable biomarkers for this disorder and new pharmacological targets for its treatment. Advances in the fields of genomics and proteomics offer a number of possible targets for the development of new therapeutic approaches. This brain-focused review highlights studies identifying neurobiological systems associated with these targets and possible pharmacotherapies, summarizing evidence from clinically relevant animal and human studies, as well as sketching improvements and challenges facing the fields of proteomics and genomics. Concluding thoughts on using results from these profiling technologies for medication development are also presented

    Suicidal Behavior and Alcohol Abuse

    Get PDF
    Suicide is an escalating public health problem, and alcohol use has consistently been implicated in the precipitation of suicidal behavior. Alcohol abuse may lead to suicidality through disinhibition, impulsiveness and impaired judgment, but it may also be used as a means to ease the distress associated with committing an act of suicide. We reviewed evidence of the relationship between alcohol use and suicide through a search of MedLine and PsychInfo electronic databases. Multiple genetically-related intermediate phenotypes might influence the relationship between alcohol and suicide. Psychiatric disorders, including psychosis, mood disorders and anxiety disorders, as well as susceptibility to stress, might increase the risk of suicidal behavior, but may also have reciprocal influences with alcohol drinking patterns. Increased suicide risk may be heralded by social withdrawal, breakdown of social bonds, and social marginalization, which are common outcomes of untreated alcohol abuse and dependence. People with alcohol dependence or depression should be screened for other psychiatric symptoms and for suicidality. Programs for suicide prevention must take into account drinking habits and should reinforce healthy behavioral patterns
    corecore