76 research outputs found

    In vivo effect of an immunostimulating bacterial lysate on human B lymphocytes.

    Get PDF
    The aim of the present study is to investigate in humans the mechanism by which the oral vaccine Polyvalent Mechanical Bacterial Lysate (PMBL) can rapidly mobilize specific immune response and evaluate the efficacy of its immunostimulating activity in preventing recurrent infections of the upper respiratory tract (URTIs) in a group of patients with a medical history of URTI recurrence. Patients received, by sublingual route, PBML, an immunostimulating lysate obtained by mechanical lysis of the most common bacteria responsible for upper respiratory tract infections. The treatment was administered for 10 consecutive days/month for 3 consecutive months. After the end of the treatment period the patients were followed up for an additional 3 months. The frequency of IgM memory B cells and the expression of the activation marker CD25 in peripheral blood lymphocytes were measured using the flow cytometric method before the start and at days 30 and 90 of the treatment cycle. To correlate clinical results to immunological parameters, the patients were monitored at different time-points during the treatment and at the end of follow-up period. The results showed that PMBL exerts a therapeutic and preventing effect in acute and recurrent infections of the upper respiratory tract and that this effect correlated with the activation and enhancement of both IgM memory B lymphocytes (CD24+/CD27+ cells) and IL2 receptor-expressing lymphocytes (CD25+ cells) involved either in humoral or cellular immunity

    Fermentation of biodegradable organic waste by the family thermotogaceae

    Get PDF
    The abundance of organic waste generated from agro-industrial processes throughout the world has become an environmental concern that requires immediate action in order to make the global economy sustainable and circular. Great attention has been paid to convert such nutrient-rich organic waste into useful materials for sustainable agricultural practices. Instead of being an environmental hazard, biodegradable organic waste represents a promising resource for the production of high value-added products such as bioenergy, biofertilizers, and biopolymers. The ability of some hyperthermophilic bacteria, e.g., the genera Thermotoga and Pseudothermotoga, to anaerobically ferment waste with the concomitant formation of bioproducts has generated great interest in the waste management sector. These biotechnologically significant bacteria possess a complementary set of thermostable enzymes to degrade complex sugars, with high production rates of biohydrogen gas and organic molecules such as acetate and lactate. Their high growth temperatures allow not only lower contamination risks but also improve substrate solubilization. This review highlights the promises and challenges related to using Thermotoga and Pseudothermotoga spp. as sustainable systems to convert a wide range of biodegradable organic waste into high value-added products

    Anti-inflammatory Effect of Resveratrol and Polydatinby In Vitro IL-17 Modulation.

    Get PDF
    Interleukin-17 (IL-17) is a proinflammatory cytokine produced, although not exclusively, by T helper 17 recently identified as a distinct T helper lineage mediating tissue inflammation. IL-17 is known to be involved in a number of chronic disorders although the mechanisms regulating its production in inflammatory disease are still unclear. The beneficial properties of the polyphenolic compound resveratrol including its nti-inflammatory, antioxidant, and antitumor effects, its role in the aging process and in the prevention of heart and neurodegenerative diseases are well-known. In addition, derivatives of resveratrol, including glucosylated molecules as polydatin have been linked to similar beneficial effects. We have investigated the effects of resveratrol and polydatin on the in vitro production of IL-17 in a model of inflammation in vitro. The results obtained by activated human peripheral blood mononuclear cells, stimulated with anti-CD3/anti-CD28 monoclonal antibodies and treated with these polyphenolic compounds at different concentrations show that both decrease IL-17 production in a concentration-dependent manner. This study confirms the anti-inflammatory activity of resveratrol and its derivatives and suggests a potential clinical relevance in the therapy of inflammatory diseases

    CD16-158-valine chimeric receptor T cells overcome the resistance of KRAS-mutated colorectal carcinoma cells to cetuximab

    Get PDF
    KRAS mutations hinder therapeutic efficacy of epidermal growth factor receptor (EGFR)-specific monoclonal antibodies cetuximab and panitumumab-based immunotherapy of EGFR+ cancers. Although cetuximab inhibits KRAS-mutated cancer cell growth in vitro by natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), KRAS-mutated colorectal carcinoma (CRC) cells escape NK cell immunosurveillance in vivo. To overcome this limitation, we used cetuximab and panitumumab to redirect Fcγ chimeric receptor (CR) T cells against KRAS-mutated HCT116 colorectal cancer (CRC) cells. We compared four polymorphic Fcγ-CR constructs including CD16158F-CR, CD16158V-CR, CD32131H-CR, and CD32131R-CR transduced into T cells by retroviral vectors. Percentages of transduced T cells expressing CD32131H-CR (83.5 ± 9.5) and CD32131R-CR (77.7 ± 13.2) were significantly higher than those expressing with CD16158F-CR (30.3 ± 10.2) and CD16158V-CR (51.7 ± 13.7) (p < 0.003). CD32131R-CR T cells specifically bound soluble cetuximab and panitumumab. However, only CD16158V-CR T cells released high levels of interferon gamma (IFNγ = 1,145.5 pg/ml ±16.5 pg/ml, p < 0.001) and tumor necrosis factor alpha (TNFα = 614 pg/ml ± 21 pg/ml, p < 0.001) upon incubation with cetuximab-opsonized HCT116 cells. Moreover, only CD16158V-CR T cells combined with cetuximab killed HCT116 cells and A549 KRAS-mutated cells in vitro. CD16158V-CR T cells also effectively controlled subcutaneous growth of HCT116 cells in CB17-SCID mice in vivo. Thus, CD16158V-CR T cells combined with cetuximab represent useful reagents to develop innovative EGFR+KRAS-mutated CRC immunotherapies

    Direct CD32 T-cell cytotoxicity: implications for breast cancer prognosis and treatment

    Get PDF
    The FcγRII (CD32) ligands are IgFc fragments and pentraxins. The existence of additional ligands is unknown. We engineered T cells with human chimeric receptors resulting from the fusion between CD32 extracellular portion and transmembrane CD8α linked toCD28/ζ chain intracellular moiety (CD32-CR). Transduced T cells recognized three breast cancer (BC) and one colon cancer cell line among 15 tested in the absence of targeting antibodies. Sensitive BC cell conjugation with CD32-CR T cells induced CD32 polarization and down-regulation, CD107a release, mutual elimination, and proinflammatory cytokine production unaffected by human IgGs but enhanced by cetuximab. CD32-CR T cells protected immunodeficient mice from subcutaneous growth of MDA-MB-468 BC cells. RNAseq analysis identified a 42 gene fingerprint predicting BC cell sensitivity and favorable outcomes in advanced BC. ICAM1 was a major regulator of CD32-CR T cell–mediated cytotoxicity. CD32-CR T cells may help identify cell surface CD32 ligand(s) and novel prognostically relevant transcriptomic signatures and develop innovative BC treatments

    In vitro elimination of epidermal growth factor receptor-overexpressing cancer cells by CD32A-chimeric receptor T cells in combination with cetuximab or panitumumab

    Get PDF
    Cetuximab and panitumumab bind the human epidermal growth factor receptor (EGFR). Although the chimeric cetuximab (IgG1) triggers antibody-dependent-cellular-cytotoxicity (ADCC) of EGFR positive target cells, panitumumab (a human IgG2) does not. The inability of panitumumab to trigger ADCC reflects the poor binding affinity of human IgG2 Fc for the FcγRIII (CD16) on natural killer (NK) cells. However, both human IgG1 and IgG2 bind the FcγRII (CD32A) to a similar extent. Our study compares the ability of T cells, engineered with a novel low-affinity CD32A131R-chimeric receptor (CR), and those engineered with the low-affinity CD16158F-CR T cells, in eliminating EGFR positive epithelial cancer cells (ECCs) in combination with cetuximab or panitumumab. After T-cell transduction, the percentage of CD32A131R-CR T cells was 74 ± 10%, whereas the percentage of CD16158F-CR T cells was 46 ± 15%. Only CD32A131R-CR T cells bound panitumumab. CD32A131R-CR T cells combined with the mAb 8.26 (anti-CD32) and CD16158F-CR T cells combined with the mAb 3g8 (anti-CD16) eliminated colorectal carcinoma (CRC), HCT116FcγR+ cells, in a reverse ADCC assay in vitro. Crosslinking of CD32A131R-CR on T cells by cetuximab or panitumumab and CD16158F-CR T cells by cetuximab induced elimination of triple negative breast cancer (TNBC) MDA-MB-468 cells, and the secretion of interferon gamma and tumor necrosis factor alpha. Neither cetuximab nor panitumumab induced Fcγ-CR T antitumor activity against Kirsten rat sarcoma (KRAS)-mutated HCT116, nonsmall-cell-lung-cancer, A549 and TNBC, MDA-MB-231 cells. The ADCC of Fcγ-CR T cells was associated with the overexpression of EGFR on ECCs. In conclusion, CD32A131R-CR T cells are efficiently redirected by cetuximab or panitumumab against breast cancer cells overexpressing EGFR

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    Sustained proliferation in cancer: mechanisms and novel therapeutic targets

    Get PDF
    Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression
    corecore