55 research outputs found

    A socio-environmental geodatabase for integrative research in the transboundary Rio Grande/Río Bravo basin

    Get PDF
    Integrative research on water resources requires a wide range of socio-environmental datasets to better understand human-water interactions and inform decision-making. However, in transboundary watersheds, integrating cross-disciplinary and multinational datasets is a daunting task due to the disparity of data sources and the inconsistencies in data format, content, resolution, and language. This paper introduces a socio-environmental geodatabase that transcends political and disciplinary boundaries in the Rio Grande/Río Bravo basin (RGB). The geodatabase aggregates 145 GIS data layers on five main themes: (i) Water & Land Governance, (ii) Hydrology, (iii) Water Use & Hydraulic Infrastructures, (iv) Socio-Economics, and (v) Biophysical Environment. Datasets were primarily collected from public open-access data sources, processed with ArcGIS, and documented through the FGCD metadata standard. By synthesizing a broad array of datasets and mapping public and private water governance, we expect to advance interdisciplinary research in the RGB, provide a replicable approach to dataset compilation for transboundary watersheds, and ultimately foster transboundary collaboration for sustainable resource management.The project was funded by Grant No. G15AP00132 from the United States Geological Survey. Open Access fees paid for in whole or in part by the University of Oklahoma Libraries.Ye

    The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2004, tuberculosis (TB) was responsible for 2.5% of global mortality (among men 3.1%; among women 1.8%) and 2.2% of global burden of disease (men 2.7%; women 1.7%). The present work portrays accumulated evidence on the association between alcohol consumption and TB with the aim to clarify the nature of the relationship.</p> <p>Methods</p> <p>A systematic review of existing scientific data on the association between alcohol consumption and TB, and on studies relevant for clarification of causality was undertaken.</p> <p>Results</p> <p>There is a strong association between heavy alcohol use/alcohol use disorders (AUD) and TB. A meta-analysis on the risk of TB for these factors yielded a pooled relative risk of 2.94 (95% CI: 1.89-4.59). Numerous studies show pathogenic impact of alcohol on the immune system causing susceptibility to TB among heavy drinkers. In addition, there are potential social pathways linking AUD and TB. Heavy alcohol use strongly influences both the incidence and the outcome of the disease and was found to be linked to altered pharmacokinetics of medicines used in treatment of TB, social marginalization and drift, higher rate of re-infection, higher rate of treatment defaults and development of drug-resistant forms of TB. Based on the available data, about 10% of the TB cases globally were estimated to be attributable to alcohol.</p> <p>Conclusion</p> <p>The epidemiological and other evidence presented indicates that heavy alcohol use/AUD constitute a risk factor for incidence and re-infection of TB. Consequences for prevention and clinical interventions are discussed.</p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    Native diversity buffers against severity of non-native tree invasions.

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. Data availability: Data used in this study can be found in cited references for the Global Naturalized Alien Flora (GloNAF) database6 (non-native status), the KEW Plants of the World database5 (native ranges) and the Global Environmental Composite63,77 (environmental data layers). Plant trait data were extracted from Maynard et al.78. Data from the Global Forest Biodiversity Initiative (GFBI) database57 are not available due to data privacy and sharing restrictions, but can be obtained upon request via Science-I (https://science-i.org/) or GFBI (gfbinitiative.org) and an approval from data contributors.Code availability All code used to complete analyses for the manuscript is available at the following link: https://github.com/thomaslauber/Global-Tree-Invasion. Data analyses were conducted and were visualizations generated in R (v. 4.2.2), Python (v. 3.9.7), Google Earth Engine (earthengine-api 0.1.306), QGIS-LTR (v. 3.16.7) and the ETH Zurich Euler cluster.Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.Swiss National Science FoundationSwiss National Science FoundationBernina FoundationDOB Ecolog

    The global biogeography of tree leaf form and habit

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: Tree occurrence data from the Global Forest Biodiversity initiative (GFBi) is available upon request via Science-I (https://science-i.org) or the GFBi website (https://www.gfbiinitiative.org/). Information on leaf habit (evergreen vs deciduous) and leaf form (broadleaved vs needle-leaved) came from the TRY database (https://www.try-db.org). Additional, leaf-type data came from the Tallo dataset (https://zenodo.org/record/6637599). Plot-level soil information came from the World Soil Information Service (WOSIS) dataset (https://www.isric.org/explore/wosis).Code availability: All code is available at https://doi.org/10.5281/zenodo.7967245.Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling
    corecore