38 research outputs found

    Validation of a method for cylindrospermopsin determination in vegetables: Application to real samples such as lettuce (lactuca sativa l.)

    Get PDF
    Reports on the occurrence of the cyanobacterial toxin cylindrospermopsin (CYN) have increased worldwide because of CYN toxic effects in humans and animals. If contaminated waters are used for plant irrigation, these could represent a possible CYN exposure route for humans. For the first time, a method employing solid phase extraction and quantification by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) of CYN was optimized in vegetables matrices such as lettuce (Lactuca sativa). The validated method showed a linear range, from 5 to 500 ng CYN g−1 of fresh weight (f.w.), and detection and quantitation limits (LOD and LOQ) of 0.22 and 0.42 ng CYN g−1 f.w., respectively. The mean recoveries ranged between 85 and 104%, and the intermediate precision from 12.7 to 14.7%. The method showed to be robust for the three different variables tested. Moreover, it was successfully applied to quantify CYN in edible lettuce leaves exposed to CYN-contaminated water (10 µg L−1), showing that the tolerable daily intake (TDI) in the case of CYN could be exceeded in elderly high consumers. The validated method showed good results in terms of sensitivity, precision, accuracy, and robustness for CYN determination in leaf vegetables such as lettuce. More studies are needed in order to prevent the risks associated with the consumption of CYN-contaminated vegetables. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.Acknowledgments: The authors would like to acknowledge the Ministerio de Economía y Competitividad of Spain (AGL2015-64558-R, MINECO/FEDER, UE) for its financial support and the FCT Project UID/Multi/04423/2013. The authors also gratefully acknowledge the Spanish Ministerio de Economia y Competitividad for the grant FPI (BES-2016-078773) awarded to Leticia Díez-Quijada Jiménez. A. Campos work was supported by a postdoctoral grant (SFRH/BPD/103683/2014) from FCT

    New Method for Simultaneous Determination of Microcystins and Cylindrospermopsin in Vegetable Matrices by SPE-UPLC-MS/MS

    Get PDF
    Cyanotoxins are a large group of noxious metabolites with different chemical structure and mechanisms of action, with a worldwide distribution, producing effects in animals, humans, and crop plants. When cyanotoxin-contaminated waters are used for the irrigation of edible vegetables, humans can be in contact with these toxins through the food chain. In this work, a method for the simultaneous detection of Microcystin-LR (MC-LR), Microcystin-RR (MC-RR), Microcystin-YR (MC-YR), and Cylindrospermopsin (CYN) in lettuce has been optimized and validated, using a dual solid phase extraction (SPE) system for toxin extraction and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for analysis. Results showed linear ranges (5⁻50 ng g-1 f.w.), low values for limit of detection (LOD) (0.06⁻0.42 ng g-1 f.w.), and limit of quantification (LOQ) (0.16⁻0.91 ng g-1 f.w.), acceptable recoveries (41⁻93%), and %RSDIP values for the four toxins. The method proved to be robust for the three variables tested. Finally, it was successfully applied to detect these cyanotoxins in edible vegetables exposed to cyanobacterial extracts under laboratory conditions, and it could be useful for monitoring these toxins in edible vegetables for better exposure estimation in terms of risk assessment.Funding: This research was funded by the SPANISH MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD (AGL2015-64558-R, MINECO/FEDER, UE); by the FPI grant number BES-2016-078773 awarded to Leticia Díez-Quijada Jiménez; by the FCT project UID/Multi/04423/2013, and the post-doctoral grant (SFRH/BPD/103683/2014) from FCT awarded to Alexandre Campos. Acknowledgments: Spanish Ministerio de Economía y Competitividad for the project AGL2015-64558-R, MINECO/FEDER, UE, and for the grant FPI (BES-2016-078773) awarded to Leticia Díez-Quijada Jiménez. CIIMAR members acknowledge FCT project UID/Multi/04423/2013 and the post-doctoral grant (SFRH/BPD/103683/2014) from FCT awarded to Alexandre Campos

    Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for pp collisions at √s=5.02 and 13 TeV and p+Pb collisions at √sNN=5.02 TeV with the ATLAS detector

    Get PDF
    ATLAS measurements of two-particle correlations are presented for √s=5.02 and 13 TeV ppcollisions and for √sNN=5.02 TeV p+Pb collisions at the LHC. The correlation functions are measured as a function of relative azimuthal angle Δϕ, and pseudorapidity separation Δη, using charged particles detected within the pseudorapidity interval |η|2, is studied using a template fitting procedure to remove a “back-to-back” contribution to the correlation function that primarily arises from hard-scattering processes. In addition to the elliptic, cos (2Δϕ), modulation observed in a previous measurement, the pp correlation functions exhibit significant cos (3Δϕ) and cos (4Δϕ) modulation. The Fourier coefficients vn, n associated with the cos (nΔϕ) modulation of the correlation functions for n=2–4 are measured as a function of charged-particle multiplicity and charged-particle transverse momentum. The Fourier coefficients are observed to be compatible with cos (nϕ) modulation of per-event single-particle azimuthal angle distributions. The single-particle Fourier coefficients vn are measured as a function of charged-particle multiplicity, and charged-particle transverse momentum for n=2–4. The integrated luminosities used in this analysis are, 64nb−1 for the √s=13 TeV pp data, 170 nb−1 for the √ s = 5.02 TeV pp data, and 28 nb−1 for the √sNN = 5.02 TeV p+Pb data

    Probing the W tb vertex structure in t-channel single-top-quark production and decay in pp collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    To probe the W tb vertex structure, top-quark and W -boson polarisation observables are measured from t-channel single-top-quark events produced in proton-proton collisions at a centre-of-mass energy of 8 TeV. The dataset corresponds to an integrated luminosity of 20.2 fb−1, recorded with the ATLAS detector at the LHC. Selected events contain one isolated electron or muon, large missing transverse momentum and exactly two jets, with one of them identified as likely to contain a b-hadron. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from background. The polarisation observables are extracted from asymmetries in angular distributions measured with respect to spin quantisation axes appropriately chosen for the top quark and the W boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. The measured top-quark and W -boson polarisation values are in agreement with the Standard Model predictions. Limits on the imaginary part of the anomalous coupling gR are also set from model-independent measurements.We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resoinfo:eu-repo/semantics/publishedVersio

    Performance of the ATLAS trigger system in 2015

    Get PDF
    During 2015 the ATLAS experiment recorded 3.8fb−1 of proton–proton collision data at a centre-of-mass energy of 13TeV. The ATLAS trigger system is a crucial component of the experiment, responsible for selecting events of interest at a recording rate of approximately 1 kHz from up to 40 MHz of collisions. This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton–proton collision data

    Search for squarks and gluinos in events with hadronically decaying tau leptons, jets and missing transverse momentum in proton-proton collisions at s√ = 13 TeV recorded with the ATLAS detector

    Get PDF
    A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying tau lepton has been performed using 3.2 fb−1 of proton-proton collision data at s√=13 TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015. Two exclusive final states are considered, with either exactly one or at least two tau leptons. No excess over the Standard Model prediction is observed in the data. Results are interpreted in the context of gauge-mediated supersymmetry breaking and a simplified model of gluino pair production with tau-rich cascade decays, substantially improving on previous limits. In the GMSB model considered, supersymmetry-breaking scale (Λ) values below 92 TeV are excluded at the 95% confidence level, corresponding to gluino masses below 2000 GeV. For large values of tanβ, values of Λ up to 107 TeV and gluino masses up to 2300 GeV are excluded. In the simplified model, gluino masses are excluded up to 1570 GeV for neutralino masses around 100 GeV. Neutralino masses up to 700 GeV are excluded for all gluino masses between 800 GeV and 1500 GeV, while the strongest exclusion of 750 GeV is achieved for gluino masses around 1400 GeV

    Femtoscopy with identified charged pions in proton-lead collisions at √sNN = 5.02 TeV with ATLAS

    Get PDF
    Bose-Einstein correlations between identified charged pions are measured for p+Pb collisions at √sNN = 5.02 TeV using data recorded by the ATLAS detector at the CERN Large Hadron Collider corresponding to a total integrated luminosity of 28 nb−1. Pions are identified using ionization energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of collision centrality as well as the average transverse momentum (kT) and rapidity (y*ππ) of the pair. Pairs are selected with a rapidity −2 < y*ππ < 1 and with an average transverse momentum 0.1 < kT < 0.8 GeV. The effect of jet fragmentation on the two-particle correlation function is studied, and a method using opposite-charge pair data to constrain its contributions to the measured correlations is described. The measured source sizes are substantially larger in more central collisions and are observed to decrease with increasing pair kT. A correlation of the radii with the local charged-particle density is demonstrated. The scaling of the extracted radii with the mean number of participating nucleons is also used to compare a selection of initial-geometry models. The cross term Rol is measured as a function of rapidity, and a nonzero value is observed with 5.1σ combined significance for −1 < y*ππ < 1 in the most central events

    Measurements of ψ(2S) and X(3872) → J/ψπ+π− production in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    Differential cross sections are presented for the prompt and non-prompt production of the hidden-charm states X(3872) and ψ(2S), in the decay mode J/ψπ+π−, measured using 11.4 fb−1 of pp collisions at √s=8 TeV by the ATLAS detector at the LHC. The ratio of cross-sections X(3872)/ψ(2S) is also given, separately for prompt and non-prompt components, as well as the non-prompt fractions of X(3872) and ψ(2S). Assuming independent single effective lifetimes for non-prompt X(3872) and ψ(2S) production gives RB=B(B→X(3872)+any)B(X(3872)→J/ψπ+π−)B(B→ψ(2S)+any)B(ψ(2S)→J/ψπ+π−)=(3.95±0.32(stat)±0.08(sys))×10−2RB=B(B→X(3872)+any)B(X(3872)→J/ψπ+π−)B(B→ψ(2S)+any)B(ψ(2S)→J/ψπ+π−)=(3.95±0.32(stat)±0.08(sys))×10−2 separating short- and long-lived contributions, assuming that the short-lived component is due to Bc decays, gives RB = (3.57 ± 0.33(stat) ± 0.11(sys)) × 10−2, with the fraction of non-prompt X(3872) produced via Bc decays for pT(X(3872)) > 10 GeV being (25 ± 13(stat) ± 2(sys) ± 5(spin))%. The distributions of the dipion invariant mass in the X(3872) and ψ(2S) decays are also measured and compared to theoretical predictions

    Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in s√=8 s=8 TeV proton-proton collisions

    Get PDF
    A selection of searches by the ATLAS experiment at the LHC for the electroweak production of SUSY particles are used to study their impact on the constraints on dark matter candidates. The searches use 20 fb−1 of proton-proton collision data at s √ =8 s=8 TeV. A likelihood-driven scan of a five-dimensional effective model focusing on the gaugino-higgsino and Higgs sector of the phenomenological minimal supersymmetric Standard Model is performed. This scan uses data from direct dark matter detection experiments, the relic dark matter density and precision flavour physics results. Further constraints from the ATLAS Higgs mass measurement and SUSY searches at LEP are also applied. A subset of models selected from this scan are used to assess the impact of the selected ATLAS searches in this five-dimensional parameter space. These ATLAS searches substantially impact those models for which the mass m(χ ~ 0 1 ) m(χ~10) of the lightest neutralino is less than 65 GeV, excluding 86% of such models. The searches have limited impact on models with larger m(χ ~ 0 1 ) m(χ~10) due to either heavy electroweakinos or compressed mass spectra where the mass splittings between the produced particles and the lightest supersymmetric particle is small

    Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector

    Get PDF
    Detailed measurements of t-channel single top-quark production are presented. They use 20.2 fb −1 of data collected by the ATLAS experiment in proton–proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8% (top quark) and 7.8% (top antiquark), respectively. The total cross-sections are measured to be σtot(tq)56.7−3.8+4.3pb for top-quark production and σtot(t¯q)=32.9−2.7+3.0pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be Rt=1.72±0.09. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the t-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available
    corecore