559 research outputs found

    Spin dynamics in high-mobility two-dimensional electron systems

    Full text link
    Understanding the spin dynamics in semiconductor heterostructures is highly important for future semiconductor spintronic devices. In high-mobility two-dimensional electron systems (2DES), the spin lifetime strongly depends on the initial degree of spin polarization due to the electron-electron interaction. The Hartree-Fock (HF) term of the Coulomb interaction acts like an effective out-of-plane magnetic field and thus reduces the spin-flip rate. By time-resolved Faraday rotation (TRFR) techniques, we demonstrate that the spin lifetime is increased by an order of magnitude as the initial spin polarization degree is raised from the low-polarization limit to several percent. We perform control experiments to decouple the excitation density in the sample from the spin polarization degree and investigate the interplay of the internal HF field and an external perpendicular magnetic field. The lifetime of spins oriented in the plane of a [001]-grown 2DES is strongly anisotropic if the Rashba and Dresselhaus spin-orbit fields are of the same order of magnitude. This anisotropy, which stems from the interference of the Rashba and the Dresselhaus spin-orbit fields, is highly density-dependent: as the electron density is increased, the kubic Dresselhaus term becomes dominant and reduces the anisotropy.Comment: 13 pages, 6 figure

    P-matrix and J-matrix approaches. Coulomb asymptotics in the harmonic oscillator representation of scattering theory

    Full text link
    The relation between the R- and P-matrix approaches and the harmonic oscillator representation of the quantum scattering theory (J-matrix method) is discussed. We construct a discrete analogue of the P-matrix that is shown to be equivalent to the usual P-matrix in the quasiclassical limit. A definition of the natural channel radius is introduced. As a result, it is shown to be possible to use well-developed technique of R- and P-matrix theory for calculation of resonant states characteristics, scattering phase shifts, etc., in the approaches based on harmonic oscillator expansions, e.g., in nuclear shell-model calculations. P-matrix is used also for formulation of the method of treating Coulomb asymptotics in the scattering theory in oscillator representation.Comment: Revtex, 57 pages including 15 figures; to be published in Annals of Physic

    A measurement of the axial form factor of the nucleon by the p(e,e'pi+)n reaction at W=1125 MeV

    Full text link
    The reaction p(e,e'pi+)n was measured at the Mainz Microtron MAMI at an invariant mass of W=1125 MeV and four-momentum transfers of Q^2=0.117, 0.195 and 0.273 (GeV/c)^2. For each value of Q^2, a Rosenbluth separation of the transverse and longitudinal cross sections was performed. An effective Lagrangian model was used to extract the `axial mass' from experimental data. We find a value of M_A=(1.077+-0.039) GeV which is (0.051+-0.044) GeV larger than the axial mass known from neutrino scattering experiments. This is consistent with recent calculations in chiral perturbation theory.Comment: 14 pages, 5 figures, uses elsart.cl

    Non-linear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes

    Full text link
    We present results of non-linear, 2D, numerical simulations of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of three to five minutes are studied, after applying horizontal and vertical oscillatory perturbations to the equilibrium model. Spurious reflections of shock waves from the upper boundary are minimized thanks to a special boundary condition. This has allowed us to increase the duration of the simulations and to make it long enough to perform a statistical analysis of oscillations. The simulations show that deep horizontal motions of the flux tube generate a slow (magnetic) mode and a surface mode. These modes are efficiently transformed into a slow (acoustic) mode in the vA < cS atmosphere. The slow (acoustic) mode propagates vertically along the field lines, forms shocks and remains always within the flux tube. It might deposit effectively the energy of the driver into the chromosphere. When the driver oscillates with a high frequency, above the cut-off, non-linear wave propagation occurs with the same dominant driver period at all heights. At low frequencies, below the cut-off, the dominant period of oscillations changes with height from that of the driver in the photosphere to its first harmonic (half period) in the chromosphere. Depending on the period and on the type of the driver, different shock patterns are observed.Comment: 22 pages 6 color figures, submitted to Solar Physics, proceeding of SOHO 19/ GONG 2007 meeting, Melbourne, Australi

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    A Search for Selectrons and Squarks at HERA

    Get PDF
    Data from electron-proton collisions at a center-of-mass energy of 300 GeV are used for a search for selectrons and squarks within the framework of the minimal supersymmetric model. The decays of selectrons and squarks into the lightest supersymmetric particle lead to final states with an electron and hadrons accompanied by large missing energy and transverse momentum. No signal is found and new bounds on the existence of these particles are derived. At 95% confidence level the excluded region extends to 65 GeV for selectron and squark masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure

    Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV

    Get PDF
    The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3 magnetic muon spectrometer for zenith angles ranging from 0 degree to 58 degree. Due to the large exposure of about 150 m2 sr d, and the excellent momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in the vertical direction is achieved. The ratio of positive to negative muons is studied between 20 GeV and 500 GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003 (stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore