355 research outputs found

    Exploiting Oxytricha trifallax nanochromosomes to screen for non-coding RNA genes

    Get PDF
    We took advantage of the unusual genomic organization of the ciliate Oxytricha trifallax to screen for eukaryotic non-coding RNA (ncRNA) genes. Ciliates have two types of nuclei: a germ line micronucleus that is usually transcriptionally inactive, and a somatic macronucleus that contains a reduced, fragmented and rearranged genome that expresses all genes required for growth and asexual reproduction. In some ciliates including Oxytricha, the macronuclear genome is particularly extreme, consisting of thousands of tiny ‘nanochromosomes’, each of which usually contains only a single gene. Because the organism itself identifies and isolates most of its genes on single-gene nanochromosomes, nanochromosome structure could facilitate the discovery of unusual genes or gene classes, such as ncRNA genes. Using a draft Oxytricha genome assembly and a custom-written protein-coding genefinding program, we identified a subset of nanochromosomes that lack any detectable protein-coding gene, thereby strongly enriching for nanochromosomes that carry ncRNA genes. We found only a small proportion of non-coding nanochromosomes, suggesting that Oxytricha has few independent ncRNA genes besides homologs of already known RNAs. Other than new members of known ncRNA classes including C/D and H/ACA snoRNAs, our screen identified one new family of small RNA genes, named the Arisong RNAs, which share some of the features of small nuclear RNAs

    HCV genome-wide genetic analyses in context of disease progression and hepatocellular carcinoma

    Get PDF
    <div><p>Hepatitis C virus (HCV) is a major cause of hepatitis and hepatocellular carcinoma (HCC) world-wide. Most HCV patients have relatively stable disease, but approximately 25% have progressive disease that often terminates in liver failure or HCC. HCV is highly variable genetically, with seven genotypes and multiple subtypes per genotype. This variation affects HCV’s sensitivity to antiviral therapy and has been implicated to contribute to differences in disease. We sequenced the complete viral coding capacity for 107 HCV genotype 1 isolates to determine whether genetic variation between independent HCV isolates is associated with the rate of disease progression or development of HCC. Consensus sequences were determined by sequencing RT-PCR products from serum or plasma. Positions of amino acid conservation, amino acid diversity patterns, selection pressures, and genome-wide patterns of amino acid covariance were assessed in context of the clinical phenotypes. A few positions were found where the amino acid distributions or degree of positive selection differed between in the HCC and cirrhotic sequences. All other assessments of viral genetic variation and HCC failed to yield significant associations. Sequences from patients with slow disease progression were under a greater degree of positive selection than sequences from rapid progressors, but all other analyses comparing HCV from rapid and slow disease progressors were statistically insignificant. The failure to observe distinct sequence differences associated with disease progression or HCC employing methods that previously revealed strong associations with the outcome of interferon α-based therapy implies that variable ability of HCV to modulate interferon responses is not a dominant cause for differential pathology among HCV patients. This lack of significant associations also implies that host and/or environmental factors are the major causes of differential disease presentation in HCV patients.</p></div

    Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task

    Get PDF
    Although impairments related to somatosensory perception are common in schizophrenia, they have rarely been examined in functional imaging studies. In the present study, magnetoencephalography (MEG) was used to identify neural networks that support attention to somatosensory stimuli in healthy adults and abnormalities in these networks in patient with schizophrenia. A median-nerve oddball task was used to probe attention to somatosensory stimuli, and an advanced, high-resolution MEG source-imaging method was applied to assess activity throughout the brain. In nineteen healthy subjects, attention-related activation was seen in a sensorimotor network involving primary somatosensory (S1), secondary somatosensory (S2), primary motor (M1), pre-motor (PMA), and paracentral lobule (PCL) areas. A frontal–parietal–temporal “attention network”, containing dorsal- and ventral–lateral prefrontal cortex (DLPFC and VLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), superior parietal lobule (SPL), inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and temporal lobe areas, was also activated. Seventeen individuals with schizophrenia showed early attention-related hyperactivations in S1 and M1 but hypo-activation in S1, S2, M1, and PMA at later latency in the sensorimotor network. Within this attention network, hypoactivation was found in SPL, DLPFC, orbitofrontal cortex, and the dorsal aspect of ACC. Hyperactivation was seen in SMG/IPL, frontal pole, and the ventral aspect of ACC in patients. These findings link attention-related somatosensory deficits to dysfunction in both sensorimotor and frontal–parietal–temporal networks in schizophrenia

    Finding Single Copy Genes Out of Sequenced Genomes for Multilocus Phylogenetics in Non-Model Fungi

    Get PDF
    Historically, fungal multigene phylogenies have been reconstructed based on a small number of commonly used genes. The availability of complete fungal genomes has given rise to a new wave of model organisms that provide large number of genes potentially useful for building robust gene genealogies. Unfortunately, cross-utilization of these resources to study phylogenetic relationships in the vast majority of non-model fungi (i.e. “orphan” species) remains an unexamined question. To address this problem, we developed a method coupled with a program named “PHYLORPH” (PHYLogenetic markers for ORPHans). The method screens fungal genomic databases (107 fungal genomes fully sequenced) for single copy genes that might be easily transferable and well suited for studies at low taxonomic levels (for example, in species complexes) in non-model fungal species. To maximize the chance to target genes with informative regions, PHYLORPH displays a graphical evaluation system based on the estimation of nucleotide divergence relative to substitution type. The usefulness of this approach was tested by developing markers in four non-model groups of fungal pathogens. For each pathogen considered, 7 to 40% of the 10–15 best candidate genes proposed by PHYLORPH yielded sequencing success. Levels of polymorphism of these genes were compared with those obtained for some genes traditionally used to build fungal phylogenies (e.g. nuclear rDNA, β-tubulin, γ-actin, Elongation factor EF-1α). These genes were ranked among the best-performing ones and resolved accurately taxa relationships in each of the four non-model groups of fungi considered. We envision that PHYLORPH will constitute a useful tool for obtaining new and accurate phylogenetic markers to resolve relationships between closely related non-model fungal species

    Boron isotopes in foraminifera : systematics, biomineralisation, and CO2 reconstruction

    Get PDF
    Funding: Fellowship from University of St Andrews, $100 (pending) from Richard Zeebe, UK NERC grants NE/N003861/1 and NE/N011716/1.The boron isotope composition of foraminifera provides a powerful tracer for CO2 change over geological time. This proxy is based on the equilibrium of boron and its isotopes in seawater, which is a function of pH. However while the chemical principles underlying this proxy are well understood, its reliability has previously been questioned, due to the difficulty of boron isotope (δ11B) analysis on foraminferal samples and questions regarding calibrations between δ11B and pH. This chapter reviews the current state of the δ11B-pH proxy in foraminfera, including the pioneering studies that established this proxy’s potential, and the recent work that has improved understanding of boron isotope systematics in foraminifera and applied this tracer to the geological record. The theoretical background of the δ11B-pH proxy is introduced, including an accurate formulation of the boron isotope mass balance equations. Sample preparation and analysis procedures are then reviewed, with discussion of sample cleaning, the potential influence of diagenesis, and the strengths and weaknesses of boron purification by column chromatography versus microsublimation, and analysis by NTIMS versus MC-ICPMS. The systematics of boron isotopes in foraminifera are discussed in detail, including results from benthic and planktic taxa, and models of boron incorporation, fractionation, and biomineralisation. Benthic taxa from the deep ocean have δ11B within error of borate ion at seawater pH. This is most easily explained by simple incorporation of borate ion at the pH of seawater. Planktic foraminifera have δ11B close to borate ion, but with minor offsets. These may be driven by physiological influences on the foraminiferal microenvironment; a novel explanation is also suggested for the reduced δ11B-pH sensitivities observed in culture, based on variable calcification rates. Biomineralisation influences on boron isotopes are then explored, addressing the apparently contradictory observations that foraminifera manipulate pH during chamber formation yet their δ11B appears to record the pH of ambient seawater. Potential solutions include the influences of magnesium-removal and carbon concentration, and the possibility that pH elevation is most pronounced during initial chamber formation under favourable environmental conditions. The steps required to reconstruct pH and pCO2 from δ11B are then reviewed, including the influence of seawater chemistry on boron equilibrium, the evolution of seawater δ11B, and the influence of second carbonate system parameters on δ11B-based reconstructions of pCO2. Applications of foraminiferal δ11B to the geological record are highlighted, including studies that trace CO2 storage and release during recent ice ages, and reconstructions of pCO2 over the Cenozoic. Relevant computer codes and data associated with this article are made available online.Publisher PDFPeer reviewe

    Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search is performed for narrow resonances decaying into WW, WZ, or ZZ boson pairs using 20.3 fb−1 of proton-proton collision data at a centre-of-mass energy of √s=8 TeV recorded with the ATLAS detector at the Large Hadron Collider. Diboson resonances with masses in the range from 1.3 to 3.0 TeV are sought after using the invariant mass distribution of dijets where both jets are tagged as a boson jet, compatible with a highly boosted W or Z boson decaying to quarks, using jet mass and substructure properties. The largest deviation from a smoothly falling background in the observed dijet invariant mass distribution occurs around 2 TeV in the WZ channel, with a global significance of 2.5 standard deviations. Exclusion limits at the 95% confidence level are set on the production cross section times branching ratio for the WZ final state of a new heavy gauge boson, W′, and for the WW and ZZ final states of Kaluza-Klein excitations of the graviton in a bulk Randall-Sundrum model, as a function of the resonance mass. W′ bosons with couplings predicted by the extended gauge model in the mass range from 1.3 to 1.5 TeV are excluded at 95% confidence level

    Search for a new resonance decaying to a W or Z boson and a Higgs boson in the ll/lv/vv + bb final states with the ATLAS detector

    Get PDF
    A search for a new resonance decaying to a W or Z boson and a Higgs boson in the ll/lv/vv + bb final states is performed using 20.3 fb −1 of pp collision data recorded at √ s = 8 TeV with the ATLAS detector at the Large Hadron Collider. The search is conducted by examining the W H / Z H invariant mass distribution for a localized excess. No significant deviation from the Standard Model background prediction is observed. The results are interpreted in terms of constraints on the Minimal Walking Technicolor model and on a simplified approach based on a phenomenological Lagrangian of Heavy Vector Triplets

    Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector

    Get PDF
    Studies of the spin, parity and tensor couplings of the Higgs boson in the H→ZZ∗→4ℓ, H→WW∗→eνμν and H→γγ decay processes at the LHC are presented. The investigations are based on 25fb−1 of pp collision data collected by the ATLAS experiment at √s=7 TeV and √s=8 TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers JP=0+, is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at more than 99.9 % confidence level. Using the H → ZZ∗ → 4ℓ and H → WW∗ → eνμν decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. The observed distributions of variables sensitive to the non-SM tensor couplings are compatible with the SM predictions and constraints on the non-SM couplings are derived

    Muon reconstruction performance of the ATLAS detector in proton–proton collision data at √s = 13 TeV

    Get PDF
    This article documents the performance of the ATLAS muon identification and reconstruction using the LHC dataset recorded at √s = 13 TeV in 2015. Using a large sample of J/ψ→μμ and Z→μμ decays from 3.2 fb−1 of pp collision data, measurements of the reconstruction efficiency, as well as of the momentum scale and resolution, are presented and compared to Monte Carlo simulations. The reconstruction efficiency is measured to be close to 99% over most of the covered phase space (|η| 2.2, the pT resolution for muons from Z→μμ decays is 2.9 % while the precision of the momentum scale for low-pT muons from J/ψ→μμ decays is about 0.2%

    Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for a high-mass Higgs boson H is performed in the H → WW → ℓνℓν and H → WW → ℓνqq decay channels using pp collision data corresponding to an integrated luminosity of 20.3 fb−¹ collected at √s = 8 TeV by the ATLAS detector at the Large Hadron Collider. No evidence of a high-mass Higgs boson is found. Limits on σH × BR(H → WW) as a function of the Higgs boson mass mH are determined in three different scenarios: one in which the heavy Higgs boson has a narrow width compared to the experimental resolution, one for a width increasing with the boson mass and modeled by the complex-pole scheme following the same behavior as in the Standard Model, and one for intermediate widths. The upper range of the search is mH = 1500 GeV for the narrow-width scenario and mH = 1000 GeV for the other two scenarios. The lower edge of the search range is 200–300 GeV and depends on the analysis channel and search scenario. For each signal interpretation, individual and combined limits from the two WW decay channels are presented. At mH = 1500 GeV, the highest-mass point tested, σH × BR(H → WW) for a narrow-width Higgs boson is constrained to be less than 22 fb and 6.6 fb at 95% CL for the gluon fusion and vector-boson fusion production modes, respectively
    corecore