246 research outputs found

    Macaque models of human infectious disease.

    Get PDF
    Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents-bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease

    Interventions to support people exposed to adverse childhood experiences : systematic review of systematic reviews

    Get PDF
    BACKGROUND: Adverse Childhood Experiences (ACEs) such as abuse, neglect or household adversity may have a range of serious negative impacts. There is a need to understand what interventions are effective to improve outcomes for people who have experienced ACEs. METHODS: Systematic review of systematic reviews. We searched 18 database sources from 2007 to 2018 for systematic reviews of effectiveness data on people who experienced ACEs aged 3-18, on any intervention and any outcome except incidence of ACEs. We included reviews with a summary quality score (AMSTAR) of 5.5 or above. RESULTS: Twenty-five reviews were included. Most reviews focus on psychological interventions and mental health outcomes. The strongest evidence is for cognitive-behavioural therapy for people exposed to abuse. For other interventions - including psychological therapies, parent training, and broader support interventions - the findings overall are inconclusive, although there are some positive results. CONCLUSIONS: There are significant gaps in the evidence on interventions for ACEs. Most approaches focus on mitigating individual psychological harms, and do not address the social pathways which may mediate the negative impacts of ACEs. Many negative impacts of ACEs (e.g. on health behaviours, social relationships and life circumstances) have also not been widely addressed by intervention studies

    Retinopathy of prematurity and risk factors: a prospective cohort study

    Get PDF
    BACKGROUND: Increased survival of extremely low birth infants due to advances in antenatal and neonatal care has resulted in a population of infants at high risk of developing retinopathy of prematurity (ROP). Therapeutic interventions include the use of antenatal and postnatal steroids however, their effects on the severity of ROP is in dispute. In addition, it has not been investigated whether severe ROP is due to therapeutic interventions or due to the severity of illness. The aim of the present study was to assess the association between the incidence of severe retinopathy of prematurity (greater than stage 2 – International classification of ROP) and mechanical ventilation, oxygen therapy, gestational age, antenatal and postnatal steroids in extremely low birth weight infants. METHODS: Neonates admitted to the neonatal intensive care unit in Lansing, Michigan, during 1993–2000 were followed to determine factors influencing the development of severe retinopathy of prematurity. Ophthalmologic examinations were started at 6 weeks and followed until resolution. We used logistic regression to estimate the relative risk (odds ratio) associated with risk factors of ROP. RESULTS: Of the neonates with ≤ 1500 g birth weight, admitted to the neonatal intensive care unit, 85% (616/725) survived. Severe retinopathy of prematurity was detected in 7.8% of 576 neonates who had eye examinations. Neonates of lower gestational age (≤ 25 weeks and 26–28 weeks) had an increased odds ratio of 8.49 and 3.19 for the development of severe retinopathy of prematurity, respectively, compared to those 29 weeks and older. Late postnatal steroid treatment starting after 3 weeks of life showed 2.9-fold increased odds ratio, in particular administration for two weeks and more (OR: 4.09, 95% CI: 1.52–11.03). With increasing antenatal steroids courses the risk of severe retinopathy of prematurity decreased, however, it was not significant. Lower gestational age, dependence on ventilation, and use of postnatal steroids were intertwined. Simultaneous presence of these factors seems to indicate severe disease status. CONCLUSION: Prolonged and late postnatal steroids treatment in very low birth weight infants may pose an increased risk for the development of severe retinopathy of prematurity; however, use of postnatal steroids may also be a marker for severity of illness. Further studies need to focus on biologic markers in the pathogenesis of retinopathy of prematurity and to better understand the influence of therapies

    The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats

    Get PDF
    To study the role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 6), a group in which LPS administration was followed by immediate fluid resuscitation which prevented the drop of renal blood flow (EARLY group) (n = 6), and a group in which LPS administration was followed by delayed (i.e., a 2-h delay) fluid resuscitation (LATE group) (n = 6). Renal blood flow was measured using a transit-time ultrasound flow probe. Microvascular perfusion and oxygenation distributions in the renal cortex were assessed using laser speckle imaging and phosphorimetry, respectively. Interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α were measured as markers of systemic inflammation. Furthermore, renal tissue samples were stained for leukocyte infiltration and inducible nitric oxide synthase (iNOS) expression in the kidney. LPS infusion worsened both microvascular perfusion and oxygenation distributions. Fluid resuscitation improved perfusion histograms but not oxygenation histograms. Improvement of microvascular perfusion was more pronounced in the EARLY group compared with the LATE group. Serum cytokine levels decreased in the resuscitated groups, with no difference between the EARLY and LATE groups. However, iNOS expression and leukocyte infiltration in glomeruli were lower in the EARLY group compared with the LATE group. In our model, prevention of endotoxemia-induced systemic hypotension by immediate fluid resuscitation (EARLY group) did not prevent systemic inflammatory activation (IL-6, IL-10, TNF-α) but did reduce renal inflammation (iNOS expression and glomerular leukocyte infiltration). However, it could not prevent reduced renal microvascular oxygenatio

    Current tidal power technologies and their suitability for applications in coastal and marine areas

    Get PDF
    A considerable body of research is currently being performed to quantify available tidal energy resources and to develop efficient devices with which to harness them. This work is naturally focussed on maximising power generation from the most promising sites, and a review of the literature suggests that the potential for smaller scale, local tidal power generation from shallow near-shore sites has not yet been investigated. If such generation is feasible, it could have the potential to provide sustainable electricity for nearby coastal homes and communities as part of a distributed generation strategy, and would benefit from easier installation and maintenance, lower cabling and infrastructure requirements and reduced capital costs when compared with larger scale projects. This article reviews tidal barrages and lagoons, tidal turbines, oscillating hydrofoils and tidal kites to assess their suitability for small-scale electricity generation in shallow waters. This is achieved by discussing the power density, scalability, durability, maintainability, economic potential and environmental impacts of each concept. The performance of each technology in each criterion is scored against axial-flow turbines, allowing for them to be ranked according to their overall suitability. The review suggests that tidal kites and range devices are not suitable for small-scale shallow water applications due to depth and size requirements respectively. Cross-flow turbines appear to be the most suitable technology, as they have high power densities and a maximum size that is not constrained by water depth

    Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2

    Get PDF
    Ocean acidification (OA) has important implications for the persistence of coral reef ecosystems, due to potentially negative effects on biomineralization. Many coral reefs are dynamic with respect to carbonate chemistry, and experience fluctuations in pCO2 that exceed OA projections for the near future. To understand the influence of dynamic pCO2 on an important reef calcifier, we tested the response of the crustose coralline alga Porolithon onkodes to oscillating pCO2. Individuals were exposed to ambient (400 ??atm), high (660 ??atm), or variable pCO2 (oscillating between 400/660 ??atm) treatments for 14 days. To explore the potential for coralline acclimatization, we collected individuals from low and high pCO2 variability sites (upstream and downstream respectively) on a back reef characterized by unidirectional water flow in Moorea, French Polynesia. We quantified the effects of treatment on algal calcification by measuring the change in buoyant weight, and on algal metabolism by conducting sealed incubations to measure rates of photosynthesis and respiration. Net photosynthesis was higher in the ambient treatment than the variable treatment, regardless of habitat origin, and there was no effect on respiration or gross photosynthesis. Exposure to high pCO2 decreased P. onkodes calcification by >70%, regardless of the original habitat. In the variable treatment, corallines from the high variability habitat calcified 42% more than corallines from the low variability habitat. The significance of the original habitat for the coralline calcification response to variable, high pCO2 indicates that individuals existing in dynamic pCO2 habitats may be acclimatized to OA within the scope of in situ variability. These results highlight the importance of accounting for natural pCO2 variability in OA manipulations, and provide insight into the potential for plasticity in habitat and species-specific responses to changing ocean chemistry.Funding was provided by grants from the National Science Foundation (OCE-0417412, OCE-10-26852, OCE-1041270) and gifts from the Gordon and Betty Moore Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    FoxP3+ T regulatory cells in cancer : prognostic biomarkers and therapeutic targets

    Get PDF
    T Regulatory cells (Tregs) can have both protective and pathological roles. They maintain immune homeostasis and inhibit immune responses in various diseases, including cancer. Proportions of Tregs in the peripheral blood of some cancer patients increase by five-to ten-folds, compared to those in healthy individuals. Tregs contribute to cancer development and progression by suppressing T effector cell functions, thereby compromising tumor killing and promoting tumor growth. Highly immunosuppressive Tregs express upregulated levels of the transcription factor, Forkhead box protein P3 (FoxP3). Elevated levels of FoxP3+ Tregs within the tumor microenvironment (TME) showed a positive correlation with poor prognosis in various cancer patients. Despite the success of immunotherapy, including the use of immune checkpoint inhibitors, a significant proportion of patients show low response rates as a result of primary or acquired resistance against therapy. Some of the mechanisms which underlie the development of therapy resistance are associated with Treg suppressive function. In this review, we describe Treg contribution to cancer development/progression, and the mechanisms of Treg-mediated immunosuppression. We discuss the prognostic significance of FoxP3+ Tregs in different cancers and their potential use as prognostic biomarkers. We also describe potential therapeutic strategies to target Tregs in combination with other types of immunotherapies aiming to overcome tumor resistance and improve clinical outcomes in cancer patients. Overall, understanding the prognostic significance of FoxP3+ Tregs in various cancers and their contribution to therapeutic resistance could help in the development of more effective targeted therapeutic strategies to enhance the clinical outcomes in cancer patients

    Author response

    Get PDF
    Dystrophin forms an essential link between sarcolemma and cytoskeleton, perturbation of which causes muscular dystrophy. We analysed Dystrophin binding dynamics in vivo for the first time. Within maturing fibres of host zebrafish embryos, our analysis reveals a pool of diffusible Dystrophin and complexes bound at the fibre membrane. Combining modelling, an improved FRAP methodology and direct semi-quantitative analysis of bleaching suggests the existence of two membrane-bound Dystrophin populations with widely differing bound lifetimes: a stable, tightly bound pool, and a dynamic bound pool with high turnover rate that exchanges with the cytoplasmic pool. The three populations were found consistently in human and zebrafish Dystrophins overexpressed in wild-type or dmdta222a/ta222a zebrafish embryos, which lack Dystrophin, and in Gt (dmd-Citrine)ct90a that express endogenously-driven tagged zebrafish Dystrophin. These results lead to a new model for Dystrophin membrane association in developing muscle, and highlight our methodology as a valuable strategy for in vivo analysis of complex protein dynamic

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages
    corecore