1,686 research outputs found

    Metabolic footprinting of extracellular metabolites of brain endothelium infected with Neospora caninum in vitro

    Get PDF
    BACKGROUND: The survival of the intracellular protozoan parasite Neospora caninum depends on its ability to adapt to changing metabolic conditions of the host cell. Thus, defining cellular and metabolic changes in affected target tissues may aid in delineating pathogenetic mechanism. We undertook this study to assess the metabolic response of human brain microvascular endothelial cells (HBMECs) to N. caninum infection in vitro. METHODS: HBMECs were exposed to N. caninum infection and the cytotoxic effects of infection were analyzed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromidin (MTT) assay and lactate dehydrogenase (LDH) release assay. Metabolic footprinting of the extracellular metabolites of parasite-infected and non-infected culture supernatant was determined by using targeted (Randox RX Imola clinical chemistry analyser) and unbiased RS (Raman microspectroscopy) approaches. RESULTS: The MTT assay did not reveal any cytotoxic effect of N. caninum challenge on host cell viability. Measurement of LDH activity showed that N. caninum significantly induced loss of cell membrane integrity in a time-dependent and dose-dependent manner compared to control cells. Targeted biochemical analysis revealed that beta hydroxybutyrate, pyruvate, ATP, total protein, non-esterified fatty acids, and triglycerides are significantly different in infected cells compared to controls. RS-based footprinting with principal component analysis (PCA) were able to correctly distinguish extracellular metabolites obtained from infected and control cultures, and revealed infection-related spectral signatures at 865 cm(−1), 984 cm(−1), 1046 cm(−1), and 1420 cm(−1), which are attributed to variations in the content of lipids and nucleic acids in infected cultures. CONCLUSIONS: The changing pattern of extracellular metabolites suggests that HBMECs are target of metabolic alterations in N. caninum infection, which seem to reflect the changing metabolic state of infected cells and constitute a level of information exchange that host and parasite use to coordinate activities

    Impact of Neospora caninum infection on the bioenergetics and transcriptome of cerebrovascular endothelial cells

    Get PDF
    In this work, the effects of the protozoan Neospora caninum on the bioenergetics, chemical composition, and elemental content of human brain microvascular endothelial cells (hBMECs) were investigated. We showed that N. caninum can impair cell mitochondrial (Mt) function and causes an arrest in host cell cycling at S and G2 phases. These adverse effects were also associated with altered expression of genes involved in Mt energy metabolism, suggesting Mt dysfunction caused by N. caninum infection. Fourier Transform Infrared (FTIR) spectroscopy analysis of hBMECs revealed alterations in the FTIR bands as a function of infection, where infected cells showed alterations in the absorption bands of lipid (2924 cm−1), amide I protein (1649 cm−1), amide II protein (1537 cm−1), nucleic acids and carbohydrates (1092 cm−1, 1047 cm−1, and 939 cm−1). By using quantitative synchrotron radiation X-ray fluorescence (μSR-XRF) imaging and quantification of the trace elements Zn, Cu and Fe, we detected an increase in the levels of Zn and Cu from 3 to 24 h post infection (hpi) in infected cells compared to control cells, but there were no changes in the level of Fe. We also used Affymetrix array technology to investigate the global alteration in gene expression of hBMECs and rat brain microvascular endothelial cells (rBMVECs) in response to N. caninum infection at 24 hpi. The result of transcriptome profiling identified differentially expressed genes involved mainly in immune response, lipid metabolism and apoptosis. These data further our understanding of the molecular events that shape the interaction between N. caninum and blood-brain-barrier endothelial cells

    Analysis of interaction between the apicomplexan protozoan Toxoplasma gondii and host cells using label-free Raman Spectroscopy

    Get PDF
    Label-free imaging using Raman micro-spectroscopy (RMS) was used to characterize the spatio-temporal molecular changes of T. gondii tachyzoites and their host cell microenvironment. Raman spectral maps were recorded from isolated T. gondii tachyzoites and T. gondii-infected human retinal cells at 6 hr, 24 hr and 48 hr post-infection. Principal component analysis (PCA) of the Raman spectra of paraformaldehyde-fixed infected cells indicated a significant increase in the amount of lipids and proteins in the T. gondii tachyzoites as the infection progresses within host cells. These results were confirmed by experiments carried out on live T. gondii-infected cells and were correlated with an increase in the concentration of proteins and lipids required for the replication of this intracellular pathogen. These findings demonstrate the potential of RMS to characterize time- and spatially-dependent molecular interactions between intracellular pathogens and the host cells. Such information may be useful for discovery of pharmacological targets or screening compounds with potential neuro-protective activity for eminent effects of changes in brain infection control practices

    The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of Mung bean yellow mosaic India virus (MYMIV) by interacting with the viral Rep protein

    Get PDF
    Mung bean yellow mosaic India virus (MYMIV) is a member of genus begomoviridae and its genome comprises of bipartite (two components, namely DNA-A and DNA-B), single-stranded, circular DNA of about 2.7 kb. During rolling circle replication (RCR) of the DNA, the stability of the genome and maintenance of the stem–loop structure of the replication origin is crucial. Hence the role of host single-stranded DNA-binding protein, Replication protein A (RPA), in the RCR of MYMIV was examined. Two RPA subunits, namely the RPA70 kDa and RPA32 kDa, were isolated from pea and their roles were validated in a yeast system in which MYMIV DNA replication has been modelled. Here, we present evidences that only the RPA32 kDa subunit directly interacted with the carboxy terminus of MYMIV-Rep both in vitro as well as in yeast two-hybrid system. RPA32 modulated the functions of Rep by enhancing its ATPase and down regulating its nicking and closing activities. The possible role of these modulations in the context of viral DNA replication has been discussed. Finally, we showed the positive involvement of RPA32 in transient replication of the plasmid DNA bearing MYMIV replication origin using an in planta based assay

    Metallome of cerebrovascular endothelial cells infected with Toxoplasma gondii using Îź-XRF imaging and inductively coupled plasma mass spectrometry

    Get PDF
    In this study, we measured the levels of elements in human brain microvascular endothelial cells (ECs) infected with T. gondii. ECs were infected with tachyzoites of the RH strain, and at 6, 24, and 48 hours post infection (hpi), the intracellular concentrations of elements were determined using a synchrotron–microfocus X-ray fluorescence microscopy (μ-XRF) system. This method enabled the quantification of the concentrations of Zn and Ca in infected and uninfected (control) ECs at sub-micron spatial resolution. T. gondii-hosting ECs contained less Zn than uninfected cells only at 48 hpi (p 0.05). Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis revealed infection-specific metallome profiles characterized by significant increases in the intracellular levels of Zn, Fe, Mn and Cu at 48 hpi (p < 0.01), and significant reductions in the extracellular concentrations of Co, Cu, Mo, V, and Ag at 24 hpi (p < 0.05) compared with control cells. Zn constituted the largest part (74%) of the total metal composition (metallome) of the parasite. Gene expression analysis showed infection-specific upregulation in the expression of five genes, MT1JP, MT1M, MT1E, MT1F, and MT1X, belonging to the metallothionein gene family. These results point to a possible correlation between T. gondii infection and increased expression of MT1 isoforms and altered intracellular levels of elements, especially Zn and Fe. Taken together, a combined μ-XRF and ICP-MS approach is promising for studies of the role of elements in mediating host–parasite interaction

    Single-Tissue and Cross-Tissue Heritability of Gene Expression Via Identity-by-Descent in Related or Unrelated Individuals

    Get PDF
    Family studies of individual tissues have shown that gene expression traits are genetically heritable. Here, we investigate cis and trans components of heritability both within and across tissues by applying variance-components methods to 722 Icelanders from family cohorts, using identity-by-descent (IBD) estimates from long-range phased genome-wide SNP data and gene expression measurements for ∼19,000 genes in blood and adipose tissue. We estimate the proportion of gene expression heritability attributable to cis regulation as 37% in blood and 24% in adipose tissue. Our results indicate that the correlation in gene expression measurements across these tissues is primarily due to heritability at cis loci, whereas there is little sharing of trans regulation across tissues. One implication of this finding is that heritability in tissues composed of heterogeneous cell types is expected to be more dominated by cis regulation than in tissues composed of more homogeneous cell types, consistent with our blood versus adipose results as well as results of previous studies in lymphoblastoid cell lines. Finally, we obtained similar estimates of the cis components of heritability using IBD between unrelated individuals, indicating that transgenerational epigenetic inheritance does not contribute substantially to the “missing heritability” of gene expression in these tissue types

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25¡4% (95% CI 19¡1-31¡8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7¡8%, 4¡8-10¡7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27¡2%, 17¡6-36¡8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33¡0%, 18¡3-47¡6; I2 =98%) than in other migrant groups (6¡6%, 1¡8-11¡3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33¡1%, 11¡1-55¡1; I2 =96%) than in migrants in hospitals (24¡3%, 16¡1-32¡6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore