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ABSTRACT

Modern Neural Networks are being applied to all kinds of industrial areas from lite
personal devices, for example, mobile phones or mmWave healthcare devices, to power-
hungry supercomputers. The complexity of some network models means that deploying

them on low-cost FPGA devices is increasingly challenging due to resource constraints and limited
power. Hardware reuse and heterogeneous execution can be used to address this problem and
this opens the opportunity for techniques such as early-exiting where the prediction confidence
level is evaluated early on.

In the first phase, this thesis investigates the application of early-exit strategies to neural
networks, mapped to low-cost Xilinx PYNQ-Z2 Field Programmable Gate Array (FPGA) System
on Chip (SoC). An early-exit strategy is applied to a network model suitable for ImageNet
classification that combines weights with floating-point and binary arithmetic precision. The
experiments show an improvement in inferred speed using a single early-exit branch, compared
with using a single primary neural network, with a negligible accuracy drop.

In the second phase, a neural network enhancement strategy is devised to improve both
accuracy and performance in the FPGA device. The initial floating-point neural network layers
are a bottleneck when executed on the Processing System (PS) of the FPGA device. Simply
quantizing and re-deploying them on the Programmable Logic (PL) without any structural
modification results in a significant accuracy drop which is unacceptable. To address this issue,
statistical experiments are devised and conducted to find which strategy is able to satisfy both
accuracy and execution efficiency.

In the final phase, this work presents a heterogeneous neural network system that is executed
on the low-cost FPGA device with improved inference accuracy and real-time image recognition.
The efficiency of inference of the improved system is beatable compared with an Intel i5-9300H
CPU with 2.44× gain of speed, and is comparable with power-hungry RTX2060 GPU with 0.87×
gain of speed.
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1
INTRODUCTION

1.1 Problem Description

The deployment of deep neural networks (DNNs) on edge devices is increasingly popular and

this brings new energy and performance challenges. For example, the inference speed of neural

networks (NNs) on central processing units (CPUs) is generally limited by the low level of

parallelism present in the hardware with just a few arithmetic units available. On the other hand,

graphics processing unit (GPU) devices offer significantly better performance with a large number

of parallel streaming processors but these are designed to work with data types wider than the

few bits used in quantized neural network (QNN) [1] models, which limits their performance. The

deployment of heavily quantized NNs on field-programmable gate arrays (FPGAs) has resulted

in very high performance and low energy consumption [2]. However, despite the efficiency of

quantized models, significant performance and complexity trade-offs are required to map DNNs

with millions of parameters in low-cost FPGAs with limited resources.

1.2 Objective

In this research, an early-exit image classification system based on the FINN framework [3] is

built. Our demonstrator is based on a low-cost Xilinx Zynq-7020 Systom on Chip (SoC) PYNQ-Z2

(FPGA) board and a Logitech C160 webcam. FINN [4] is a framework that specifically targets

QNNs, with an emphasis on generating dataflow-style architectures customized for each network.

The resulting FPGA accelerators are highly efficient and can yield high throughput and low

latency. Our target system setup is shown in Figure 1.1. The webcam is connected to the PYNQ-

Z2 board via a USB cable. Both webcam capture and direct image input are possible in this

recognition system with a heterogeneous NN deployed to achieve optimal performance. The

1



CHAPTER 1. INTRODUCTION

image file is stored on the SD card and contains the Ubuntu 18 operating system and the entire

embedded NNs. The desktop connects to the PYNQ-Z2 board via an Ethernet cable and can

communicate and operate the board over SSH. The proposed early-exit system contains a primary

network, which has more network layers and can achieve better accuracy but it is slower; and

a small-scale network, which has fewer network layers with high efficiency but has relatively

lower accuracy. Most of the computing layers of the NN are executed on the programmable logic

(PL). However, the entropy evaluation module is executed in the processing system (PS). The

deployment strategy will be explained in detail in Chapter 3 and 4. The uncertainty evaluation

module based on entropy estimations is used to decide which network should be applied during

inference. These two NNs cooperate with each other to form a high-performance adaptive system

with optimized processing time.

Power plug

Connected to webcam 
via the USB cable

Connected to desktop  
via Ethernet cable

Image file on 
 SD card

FIGURE 1.1. The experiment set up

The main contributions of this thesis can be summarized as follows:

• I propose the application of an early-exit strategy for the first time, to the best of our

knowledge, that targets a hardware-based binarized neural network and the Imagenet dataset.

• I propose an adaptable NN topology based on the FINN [2] framework that uses a variable

number of layers, dependant on data complexity, which can be deployed on a low-complexity

PYNQ-Z2 FPGA board.

2



1.3. OUTLINE

• I evaluate the accuracy and execution time by changing the entropy of the uncertainty

evaluation module with different image perspectives captured by the camera.

1.3 Outline

A thorough background research and core concepts about the NN and optimization methods, as

well as the early-exit strategy and FPGA frameworks will be provided. Related work on various

state-of-the-art NNs implementations on FPGAs will also be reviewed in Chapter 2.

Chapter 3 will demonstrate the training method of an early-exit NN system and the imple-

mentation method for NN to FPGAs. The execution effect will also be given.

The results from Chapter 3 will be used in Chapter 4. Chapter 4 optimizes the NN proposed

in Chapter 3 with higher inference accuracy and faster execution speed. Evaluation of the

performance of the FPGA system will also be examined.

Chapter 5 will present an overall conclusion and the potential future work for this research

program.

3
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2
BACKGROUND AND LITERATURE REVIEW

The deployment of DNNs on FPGAs has become popular due to their design flexibility,

good performance, and low energy consumption. However, the limited resources available

in embedded FPGAs require significant trade-offs between performance and complexity.

The current progress in DNNs dictates that the number of required parameters has reached

the order of millions or even billions. For example, CoAtNet-7 [5], the most advanced NN as of

writing this publication, achieves 90.88% of top-1 accuracy when applied to the ImageNet dataset

and contains 2.44 billion parameters. Other widely-used NNs such as VGG [6], GoogLeNet [7],

and Res-Net [8] have also reached the level of millions of parameters. The increase in parameters

significantly improves the accuracy of DNNs, but it makes the deployment on low-cost edge

devices challenging.

2.1 The Fundamental of the FPGA Device

An FPGA is an integrated circuit that may be customized by a customer or a designer after

production. A hardware description language (HDL), similar to that used for an application-

specific integrated circuit (ASIC), is typically used to specify the FPGA configuration. The typical

FPGA DEVICE, such as the ZYNQ FPGA board utilized in this research, has two fundamental

components that are referred to as PS and PL. The PS is the processing unit of the entire device.

It normally contains a CPU to control the device and communicate with the PL. An operation

system (normally a Linux system) is integrated inside the CPU to achieve the self-run function

of the entire FPGA device. The PL is the FPGA integrated circuit mentioned at the beginning

of this section. The basic structure of FPGA is composed of a programmable input/output (I/O)

unit, a basic programmable logic unit, embedded block RAM (BRAM), wiring resources, and a

low-level embedded functional unit.

5



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

• The I/O unit is the interface part between the chip and the external circuit and the PS,

ensuring that input and output signals are driven and matched according to the various electrical

characteristics. The majority of FPGA I/O modules are currently constructed in programmable

mode to enable more versatile applications.

• The basic programmable logic unit is the main body of programmable logic, which is almost

composed of Look-Up Tables (LUT) and registers. The FPGA’s internal register structure is

extremely adaptable. It can be set up as a latch, a clock enabler, or a trigger with synchronous or

asynchronous reset. Registers are necessary for the FPGA to finish designing the synchronous

timing logic. A general FGPA has a massive number of LUT slices to perform parallel computation.

Hence, the FPGA in PL can be used to solve any problem which is computable and suitable for

hardware acceleration tasks.

• BRAM is a sort of random access memory (RAM) that is integrated into an FPGA to store

data. Currently, BRAMs are embedded in the majority of FPGAs. The FPGA’s application range

and versatility are substantially increased by the embedded programmable RAM module.

In this research, a PYNQ-Z2 FPGA device is applied. This FPGA device is based on a ZYNQ-

7000 series platform produced by Xilinx. The standout feature Zynq-7000 series is its complete

ARM processor system in the PS, which integrates a memory controller and a massive amount of

peripherals to completely decouple the Cortex-A9 processor from programmable logic units. In

the meantime, the PL in the Zynq-7000 series FPGA is known as Configurable Logic Block (CLB).

There are two logical slices in each CLB. Each slice is composed of four LUTs, eight triggers,

and additional logic units. CLB is the smallest component of a logical unit organized in PL as

a two-dimensional array and linked to similar resources through programmed interconnection.

The BRAM in this project is used to retain large datasets of parameters from the neural network.

The system is able to benefit from it rather than storing datasets in the built-in RAM of the LUTs

due to its effectiveness.

2.2 Quantized Neural Networks

In recent years, the need for floating-point multiply-add operations has been reduced by using

weight and activation quantization. Model quantization can be used to convert full-precision

parameters (including activation, weight, and even gradient) to a finite integer space through a

quantization function. Model quantization is able to reduce the storage space of each individual

parameter and simplify the complexity of computation in the convolutional layers, so quantization

can realize neural network acceleration. However, quantization has a negative impact on the ac-

curacy of NNs. This is because the full-precision parameters (normally 32 bits) are approximated

to finite numbers with lower bits. The lower bit of the NN is quantized, the higher NN accuracy

will lose. Also, the quantization on the first convolutional layer and the last fully connected layer

results in a more significant accuracy drop than other layers since they connect to the input

6



2.2. QUANTIZED NEURAL NETWORKS

and output of NNs and preserve more information. DoReFa-Net, proposed by Zhou et al. [9],

explored the accuracy in the forward/backward passes during the convolution using low bit-width

weights. This made effective NN implementations on FPGAs possible. They experimented with

partly binarized NNs and fully binarized NNs on the ImageNet dataset with 53% Top-1 accuracy.

MBN [10], Dorefa-Net, and ABC-Net [11] divide multi-bit operations into guaranteed multi-bit

operations, which can achieve simultaneous model compression and computational acceleration

in multiple operations with bit-type precision. The papers mentioned above all quantify the

parameters or activation values of all layers of the model to the same accuracy, while mixed-

precision quantization can match better solutions according to the importance and sensitivity of

different layers of the model, resulting in better performance. However, Haq proposed by Kuan et

al. [12] is able to incorporate the feedback of acceleration information evaluated by hardware

simulators into the training process, and use reinforcement learning to automatically determine

the quantization strategy. Gong et al. [13] and Bichen et al. [14] convert the quantization task

into a neural network structure search task. They apply Gumbel-softmax sampling to select the

quantization branch and use the backward pass to optimize the network weights and structure

parameters.

Quantization is also applied as a universal technique in FPGA-based DNN implementation.

Jun et al. [15] realize an FPGA implementation based on the H.264-compressed integer discrete

cosine transform and model quantization. The LSTM model which is implemented by Song et

al. [16] on the FPGA with a 20 times size compression realized a speech recognition engine.

Among the 20 times compression, 10 times are from the network pruning and 2 times are from

the quantization. FP-BNN proposed by Liang [17] is a binarized neural network for FPGAs.

It eliminates the bottleneck of parameter access by data quantization and optimized on-chip

storage.

2.2.1 Binarized Neural Networks

Binary Neural Networks (BNNs) eliminate the need for multiplications altogether such as Bin-

naryConnect [18]. Kim and Smaragdis [19] believe that in a fully binarized NN, some inactive

neurons can be preserved as zero weight, while others are served as one weight during the calcu-

lation. They achieved 98.7% of accuracy on the MNIST dataset using the proposed BNN system.

In a BNN only XNOR and bit counting operations are used instead of multiplication/addition.

XNOR-Net [20] is proposed by the research group of Rastegari, which applied the binary convolu-

tional neural network on the ImageNet dataset classification task. It is inspired by Alex-Net [21],

Res-Net [8], and GoogLeNet [7]. XNOR-Net achieves 51.2% of Top-1 accuracy in a fully binarized

NN with the ResNet-18 architecture and 65.5% of Top-1 accuracy in a partly binarized NN with

the GoogLeNet architecture. Also, XNOR-Net achieves a 58× acceleration result on the CPU with

32× memory saving. Kwan et al. [22, 23] experimented with an adaptive system that varies the

number of frames used for image classification with a BNN and improved the accuracy to 70.4%

7



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

based on the FINN library using real data frames as input. The inference part is executed on the

PL, while a filter that adapts the system is executed on the PS.

2.2.2 Parameter Sharing

The papers [24, 25] categorise parameter co-construction and sharing as a step in the quantiza-

tion operation. There are also differences in the sharing rules used by different studies. Chen et

al. [26] use a low-cost hash function to randomly assign connection weights to hash buckets, and

then all connections in the same hash bucket share a single parameter value. However, paper [27]

proposes a k-means clustering operation for all weights; once the clustering is complete, weights

belonging to the same class will share a single parameter value. The two papers above both

compress the neural network by sharing parameter models. A typical method for clustering is to

cluster each training weight parameter by k-means for each layer of training. Parameters that

belong to the same class use the value of the class clustering centre as their weight parameter

values. Parameters belonging to the same class are assigned to the weight parameters using

the value of the cluster centre as their weight parameter value. The shared weights are then

assigned to the positions of the weight parameters by means of an index matrix. By sharing the

weights, the original weight matrix becomes a look-up table with a shared weight matrix, i.e.

the original weight matrix is replaced by a look-up table matrix of the same size as the weight

matrix. The indexes on the look-up table matrix find the corresponding shared weights exactly,

and the shared weights are simply stored in a matrix whose size is the total number of shared

weights, as shown in Figure 2.1.
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FIGURE 2.1. Weight sharing in compression methods for neural networks
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2.2.3 Hardware Neural Network

Hardware devices designed to realize Artificial Neural Network (ANN) architectures and associ-

ated learning algorithms especially taking advantage of the inherent parallelism in the neural

processing are referred as Hardware Neural Networks (HNN) [28]. The basic architecture can be

divided into the following categories:

1. Single FPGA chip, with constraints of computation resources and arrays and process each

layer in order.

Zhang et al. [29] proposed a system that fits in a single FPGA chip and a DDR3 DRAM

for external storage and designed an accelerator based on the Roofline model to optimize the

calculation in each layer. Ovtcharov et al. [30] proposed a similar system while the efficiency is

improved by three times compared with Zhang’s work. Eyeriss Neural Network [31] is applied

with 16-bit Fixed-Point rather than Floating-Point. Furthermore, all 2D convolutions are grouped

together and mapped then run on multiple 1D convolution primitives. By doing this, they achieved

up to 2.5 times more energy efficiency than that of other dataflow architectures.

2. Streaming computation, with individual processing units in each neural network layer.

Venieris and Bouganis proposed fpgaConvNet [32], a modified Synchronous Dataflow (SDF)

paradigm framework to implement CNNs on FPGAs. This is similar to FINN but there are

optimizations for BNN in FINN, while the original SDF is designed for CNN.

3. Vector processor

Farabet et al. described a programmable ConvNet Processor (CNP) [33], which can be thought

of as a kind of Reduced Instruction Set Computer (RISC) processor, with a vector instruction

set that matches the elementary operations of a ConvNet including 2D convolutions, 2D spatial

pooling, dot product, and an elementwise non-linear mapping function.

4. Neuromorphic Computing

The TrueNorth architecture is a multicore array where each core consists of 256 input lines,

256 neurons, and a 256×256 synaptic crossbar array. Each neuron can connect to 1 input on

1 core through a spike router and can connect to any neuron on the target core through the

crossbar [34].

BNNs significantly improve the efficiency of image classification. However, this comes at the

cost of a decrease in the accuracy of larger networks. However, low-precision neural networks

are still applicable in some scenarios with minimal pre-processing [35], such as handwritten

characters.

2.3 Pruning

The proposal of network pruning can be traced back to 1989, proposed by Yann et al. [36]. The

core concept of pruning is to delete the less important parameters by estimating the importance

of each individual parameter to achieve the purpose of model compression, the demonstration of

9
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pruning is shown in Figure 2.2. Unlike the quantization method presented above which focuses

on the parameters themselves and reduces the storage space of each parameter directly so that

the computational speed can be improved. The network pruning method is based on a matrix

multiplication perspective, which focuses on reducing the number of parameters and the amount

of computation. In the paper [37], a Second-order Taylor Expansion was used to select the network

parameters and pruning operations. Also, regularization is proposed as a method for pruning in

order to improve the training and generalisation capabilities of NNs.

(a) Before pruning

Connection Pruning

Neuron Pruning

(b) After pruning

FIGURE 2.2. Connections and neurons before and after pruning

Depending on the cropping method, existing pruning methods can be divided into threshold

cropping methods, dynamic remediation methods, Filters cropping methods, and importance

cropping methods [38, 39]. During pruning, the importance of a network parameter can be

measured by calculating the magnitude of the second-order derivative of the loss function with

respect to that parameter or by calculating the absolute value of that parameter. The smaller

the value, the less important the parameter is and it can be removed. When performing network

pruning, the designer needs to consider two issues: whether pruning one node of the output will

affect other output nodes, and how to perform a complete removal of the removed parameters. To

address these two issues, Filter-level, Group-level, and Sparse Convolution methods are used [40].

Whichever pruning method is used, the pruned network needs to be adjusted again. Jun et

al. [15] propose load-balance-aware pruning, which takes into account the load balance between

different cores in the eventual multi-core parallel acceleration. The granularity of pruning can

also affect the accuracy of the network during pruning. Pruning can be divided by granularity

into fine-grained pruning and coarse-grained pruning, where fine-grained pruning is mainly

weight cropping, which is mainly local adjustment and preserves the accuracy of the model,

while coarse-grained pruning is cropping filters or channels and is more effective in speeding

up the model. Mao et al. [41] explore the effect of different pruning sizes on model accuracy

and demonstrate that coarse-grained pruning can also achieve accuracy close to or better than

fine-grained pruning.
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2.4 Low-rank Estimation

Low-rank estimation is a technique that combines matrix or tensor decomposition and linear

operations such as matrix multiplication or convolution to decompose the original parameter

tensor into a number of small tensors or to replace the original convolution with a number of

small convolutions. The manipulation of high-dimensional matrices will use Tensor decomposition

methods to accelerate and compress the neural network. Current tensor decomposition methods

include Canonical Polyadic (CP) decomposition, Tucker decomposition, Tensor Train decomposi-

tion [42], and Block Term decomposition. The typical convolutional kernel of a neural network

is a four-dimensional tensor and the fully connected layer can be treated as a two-dimensional

matrix, and there is often a large amount of redundancy in these tensors. Hence, we can use

low-rank estimation methods to decompose the parameter matrix and reduce the number of

parameters to achieve model compression and acceleration. A low-rank estimation of each layer

of the neural network is approximated layer by layer using a low-rank filter, after which the

parameters of each layer are fixed, while for each previous layer, they will be fine-tuned according

to the reconstruction error criterion [43–45]. Figure 2.3 shows a typical low-rank estimation

method for a 2D convolutional layer. The left part of this figure shows the typical 2D layer doing

convolution without low-rank estimation. The kernel of this layer is considered a cuboid shape.

The right part of this figure demonstrates the same 2D layer doing convolution with low-rank

estimation. The procedure of low-rank estimation is considered a decomposition action with two

steps compare with the convolution without low-rank estimation with one step. The first step

is doing a convolution regarding the ’thickness’ of the kernel. And the second step is doing a

convolution regarding the ’surface’ of the kernel.

FIGURE 2.3. A typical low-rank estimation method for a 2D convolutional layer

The low-rank approximation proposed by Jaderberg et al. [46] focuses on using linear combi-

national convolutional kernels of n×1+1×n instead of n×n. The method achieves a 2.5x speedup

in text recognition experiments with no loss of accuracy. At the same time, the advantages and
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disadvantages of using low-rank estimation methods for model compression and acceleration are

illustrated in this paper as follows:

Advantages: Low-rank estimation does not change the structure of the underlying operations

and does not require additional definition of new operations. There are various decomposition

methods for low-rank estimation. There are many different methods and any matrix or tensor

decomposition method can be used any matrix or tensor decomposition method can be used for

low rank decomposition. By applying low-rank estimation to a neural network, the number of

parameters in the decomposed network is greatly reduced.

Disadvantages: In order to ensure the accuracy of the decomposition network model, it is

generally necessary to adjust the parameters of the decomposition network. In addition, there

is no clear rule on the number of reserved ranks in low-rank estimation. Too many reserved

ranks can ensure some accuracy, but the effect of accelerated compression is not obvious. The

effect of accelerated compression is not satisfactory. If the number of retained ranks is too small,

accelerated compression will work better, but accuracy is not guaranteed.

There are also several designs about low-rank estimation to accelerate NN on FPGAs. Han

et al. [47], proposed a low-rank channel estimation method for orthogonal frequency division

multiplexing based on signal-to-noise subspace theory and implement it in an FPGA. Jaderberg

et al. [46] propose the construction of low rank filters of rank 1 by crossover channels and filter

redundancy to achieve acceleration. Denton et al. [48] propose to construct filters of rank k and

use intermediate layers of convolution to reduce the rank. This method can increase the speed of

each convolutional layer by a factor of 1 with only a 1% loss in accuracy. A new FPGA accelerator

is proposed [49] that can speed up low-rank matrix implementation algorithms based on matrix

gradient decomposition. A novel automatic computational framework based on low-rank matrix

theory is proposed [50] for FPGA-based online analysis of non-sparse correlation matrices for big

data.

2.5 Early-exit Strategy and Training Method

The early-exit strategy has been proposed as a way to adapt the classification effort to the

complexity of the task. The objective is to improve performance and reduce energy requirements

with a minimum accuracy drop. A demonstration of the concept of early-exit is shown in Figure 2.4.

BranchyNet [51] was proposed with the core idea of early exiting by introducing an early-exit

system in the DNN. This architecture allows prediction results for a large portion of test samples

to exit the network early via those branches when samples are able to be inferred with very

high confidence, while samples with low confidence will continue inference to the next exit point

in the network. A classification always takes place if the sample reaches the last layer of the

baseline NN. Branchy-LeNet (B-LeNet) on the MNIST dataset and Branchy-ResNet (B-ResNet)

on the CIFAR10 dataset are both modifications from the original Le-Net and Res-Net NNs.
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Conv 2

Conv 3

Conv 4

Linear

Input

Exit 1

Output
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FIGURE 2.4. A typical early-exit NN with two early exits

B-LeNet and B-ResNet achieve 99.25% and 79.17% respectively, which have negligible accuracy

drop or even slightly increased accuracy compared with the 99.20% and 80.70% accuracy of

the original networks. At the same time, B-LeNet and B-ResNet also achieved 4.7× and 1.9×
speed improvement compared with the original networks on an NVIDIA GeForce GTX TITAN X

(Maxwell) 12GB GPU. In our research, an early-exit NN will be created using similar techniques

to BranchyNet. Teerapittayanon et al. [52] also applied BranchyNet to the portable-edge-cloud

heterogeneous computing system. Their NN model was divided into three parts. The smallest

one is deployed on a portable device and the inference starts from here. If the confidence in this

model is not enough, the inference process is uploaded to the edge server where the medium size

network model is deployed. If the output is still low-confidence, the largest network model is

deployed in the cloud. Wang et al. [53] proposed a dual dynamic inference framework for DNN

training containing Input-Adaptive Dynamic Inference (IADI) and Resources-Adaptive Dynamic

Inference (RADI). The IADI can dynamically choose the sub-network that is the most time-

effective with minimal degradation of accuracy, while RADI decides the confidence of early exit.

This framework is applied on Res-Net trained with CIFAR-10 resulting in up to 4× computational

saving with the same or higher accuracy compared with the SkipNet [54]. Lo et al. [55] proposed

authentic operation (AO) and dynamic network sizing under the early-exit concept. AO is used

after an initial inference is performed locally to decide whether the input should be transferred
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to the edge server for further inference or to present the output directly. The dynamic network

determines the number of NN layers be used. Neshatpour et al. [56] decomposed the convolutional

neural network (CNN) into a continuous number of smaller networks that are capable of image

classification, and an early-exit strategy is introduced afterwards. Li et al. [57] and Phuong et

al. [58] introduced multiple early-exit branches to the DNN model with the ImageNet dataset.

More recent research shows that multiple early-exit branches can improve the efficiency of

inference as demonstrated in SDN [59], SPINN [60], and SCAN [61]. However, adding multiple

exit branches into the NN system increases the complexity of the network and in this research,

we focus on a single exit branch due to the limited resources available in the selected Zynq-7020

FPGA device.

The training method of the early-exit networks shown above is known as joint training. In

joint training, all the layers in a model are trained simultaneously. In this paper, the early-exit

branch network is trained separately from the primary network. The primary network is trained

in the initial phase. Then, the early-exit branch is introduced and trained while the pre-trained

primary model is made immutable. Since the branch network is trained separately, it is not

required to train the whole network from scratch but only re-train the corresponding branches if

there are modifications or additions to the branch network.

There is also a similar concept of the primary network and subordinate network called Multi-

Precision CNNs in the research work done by Amiri et al. [62]. In that work, NNs were trained

independently, and they did not share the same data structure. In this research, we will still

retain the multi-CNN concept but the early-exit branch network will share a part of the structure

with the primary network. This will reduce the NN size and the NN training process.

2.6 Computational Acceleration and Optimisation

2.6.1 Matrix Multiplication Optimisation

Matrix operations dominate the training and forward computation of deep neural networks. The

dominance of matrix operations in the training and forward computation of deep neural networks

makes the speed-up of matrix operations very important. Optimisation of matrix multiplication

can be achieved by reducing the number of multiplication computations and increasing the speed

of computation. The matrix blocking technique and the Winograd transformation are often used

as the basis for transformation methods and also as optimisation algorithms for neural networks.

2.6.1.1 Blocking Matrix

In deep neural networks, there are a large number of matrix operations and often cache misses

occur because the matrix is too large. Cyclic blocking allows the matrix to be cyclically partitioned

into smaller modules for computation. This allows on-chip storage data to be reused, reducing

the number of memory accesses and improving computational efficiency. The total number of
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multiplication calculations before and after the blocked matrix remains the same. x× x matrix

is blocked by y× y The whole matrix is divided into x2

y2 sub-matrices and the total number of

multiplication calculations remains the same The total number of multiplication calculations

remains ( x2

y2 )× x× y2, which is x3. The on-chip access performance can be improved as reads and

writes are performed in close proximity to each other every time. Most convolutional neural

network algorithms are implemented using loops, and the looping process is usually optimised

using loop blocking and loop expansion. The size of the loop chunks affects the parallelism of the

computation and determines to some extent the number of computational operations per unit of

time. Therefore, in convolutional neural network operations, we often need to consider the row

and column block sizes of the output feature map.

2.6.1.2 Winograd Transformation

The core idea of the Winograd transformation method is to use more addition rather than

multiplication [63]. Since multiplication is much more mathematical complex than addition,

certain amount of more addition operations can still operate faster than the fewer multiplication

operations. Therefore, when the dimension of the filter is relatively small, we can use the

Winograd method for the convolution operation. [64] was the first work to introduce the Winograd

algorithm, in which the Winograd algorithm and the Fourier transform algorithm were used to

prune convolutional neural networks. The result of this work shows that the pruning performance

of the Winograd algorithm was superior to that of the Fourier transform algorithm. The work

in [65, 66] introduced the Winograd filter and optimized the data path by using a circular

unfolding and tiling strategy to support Winograd convolution, resulting in a certain degree of

performance improvement and power reduction in the designed convolutional neural network

model accelerator. Liang et al. [67] proposes an FPGA implementation of the Winograd algorithm

that reduces the number of layers in the convolutional computation cycle. The sparse Winograd

convolutional accelerator implemented on FPGAs in paper [68] shows experimental results on

VGG-16 and YOLO networks with a speedup of 2.9× to 3.1× compared to the latest techniques.

2.6.2 Convolution Optimization

The neural network structure normally consists of a series of convolutional layers, pooling layers

and fully connected layers. The convolutional and fully connected layers are often designed for

matrix operations in the hardware architecture. If the convolutional and fully-connected layers

can be transformed into matrices, then the calculations can be performed and accelerated by

using FPGAs. Figure 2.5 shows the transformation of a two-dimensional convolution into a

matrix.

In this research, blocking matrix is applied in the NN for the pipeline streaming of the FPGA

board to achieve hardware acceleration. Based on this idea, the multi-layer offload architecture
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FIGURE 2.5. The operation of two-dimensional convolution converting to matrix.

is designed for this system so that multiple NN layers are able to be executed simultaneously.

This feature will promote the acceleration effect.

2.7 NN framework on FPGAs

With the development of the neural network, several frameworks targeting the deployment of

neural networks on FPGAs have been proposed. FP-DNN was proposed by Guan et al. [69]. This is

an end-to-end framework that can automatically implement TensorFlow-described DNNs on the

hardware of FPGA boards with RTL-HLS hybrid templates. Being tested based on the VGG-19

network with fixed16 on an FPGA board, it reached 2.14× energy-efficiency compared with GPU.

The Caffeinated FPGAs framework [65] is a modified version of the popular CNN framework

Caffe, with FPGA support. This framework achieves 50 GFLOPs across 3×3 convolutions in the

benchmarks.

The recently announced framework hls4ml, proposed by Fahim et al. [71] presents a Python

package for machine learning inference in FPGAs. This firmware is able to implement machine

learning algorithms using high-level synthesis language (HLS). However, the new-announced

framework is not stable yet. Also, hls4ml does not support the Conv2D function in both PyTorch

and ONNX, which makes things problematic to implement a 2D graphical machine learning

algorithm.

In contrast to the previous work that considers DNNs mapped to CPUs and GPUs, we deploy

the early-exit strategy on an FPGA-based BNN with the FINN framework. Umuroglu et al. [4]

implemented a BNN with FINN into a Xilinx ZC706 embedded FPGA platform. It demonstrated

up to 12.3 million image classifications per second with 0.31µs latency on the MNIST with 95.8%

accuracy while reaching up to 21096 image classifications per second with 283µs latency on the

CIFAR-10 and SVHN dataset with respectively 80.1% and 94.9% accuracy. This previous FINN

research has targeted small datasets so the whole network can fit in device memory. Zhang et

al. [70] proposed FracBNN, a BNN which is deployed on a Zynq Ultrascale+ MPSoC device and

achieved 71.8% Top-1 accuracy. Although the accuracy of FracBNN based on ReActNet is better
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than our model, FracBNN is too large to be deployed on our low-cost FPGA device. Furthermore,

we build an early-exit branch network based on the primary network increasing complexity,

which will make FracBNN implementation even more problematic. In our case, we focus on more

complex datasets like Imagenet that need hardware reuse and allow the concept of the early exit

to be deployed efficiently.

2.8 Summary and Direction

The decades years of developing the NN architecture and computational hardware performance

allow it to provide engineers with a variety of ways to improve the accuracy and reliability of the

NN. However, it becomes problematic to continue developing them on edge devices due to energy

management reasons. FPGAs bring the solution with low energy consumption and effective

acceleration performance on parallel computing.

There are several matured low-cost FPGA products that can be considered for our research.

Table 2.1 shows the comparison of technical details for these FPGA devices. The AVNET ZedBoard

has a similar hardware specification compared with PYNQ-Z2. But the price is significantly

higher than PYNQ-Z2. The Ultra96 has a noticeable advantage in terms of memory. However, the

BRAM capacity is significantly less than PYNQ-Z2, which is a vital component in this research

since it requires a sufficient amount of BRAM space to store the parameters of the NN. The

Artix-7 35T is the most economical product. But the hardware performance is considered too

poor to complete the image reference task efficiently. The PYNQ-Z2 was finally chosen due to the

relatively good performance on both PS and PL sides, reasonable price, and good compatibility

with python.

TABLE 2.1. Key specification parameters of various FPGA devices

Device CPU Memory BRAM Supported by
Python Price

AVNET ZedBoard ARM Cortex-A9 512MB DDR3 615KB Not supported $499

Ultra96 Quad-core ARM
Cortex-A53

2GB LPDDR4 36KB Supported $299

Artix-7 35T MicroBlaze 256MB DDR3 36KB Not supported $129

PYNQ-Z2 Dual-core ARM
Cortex-A9

512MB DDR3 630KB Supported $192

Simply implementing the NN into FPGA devices, using whatever variety of NN frameworks

and optimization strategies, is not enough. Chapter 3 and Chapter 4 will present an appropriate

pathway and strategy to delicately from the NN being compatible with FPGA hardware resources

to maximizing the efficiency of operations of FPGAs.
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3
EARLY-EXIT TOPOLOGY AND FPGA DEPLOYMENT

This chapter concentrates on the early-exit topology and demonstrates the training method

of the NN, as well as the implementation method into the FPGA board and the hardware

acceleration result. This chapter focuses on the demonstration of the feasibility of an

early-exit strategy targeting an FPGA board. Chapter 4 builds upon based on the results of this

chapter to optimize the NN and hardware acceleration.

3.1 Problem Description

Neural networks, especially those targeting the ImageNet dataset for real-time image identifi-

cations on edge devices are increasingly demanded. Though the accuracy of NNs for ImageNet

have improved with its development, it is challenging to deploy them on edge devices due to the

model size. The current most recent work related to NN deployment on FPGAs called FracBNN,

as described in Chapter 2, is executed on a robust Zynq Ultrascale+ MPSoC device. However,

the model size of FracBNN is still too large for a low-complexity FPGA board. Furthermore,

FracBNN implements a full-precision connection to each convolutional layer in the model, which

significantly decelerates the inference speed (The comparison of computing speed between the

full-precision PS-executed layer and quantized PL-executed layer will be demonstrated in the

following evaluation section). On the one side, full-precision layers are unable to be deployed on

the PL, so it has to be executed on the PS. On the other hand, the PS is considerably inefficient

compared with the modern power-hungry CPUs, which will slow down the total acceleration effect

on the FPGA board. The approach demonstrated in FracBNN by adding full-precision layers in

front of every convolutional layer results in a time-inefficient system because the full-precision

convolution consumes a lengthy period. Hence, the approach in this chapter applies as few
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full-precision layers as possible.

3.2 Approach

In the approach in this chapter, Python version 3.6.9 and PyTorch 1.10.2 with GPU support and

dependencies were applied on an 8-core vCPU (virtual cloud CPU), Tesla P100 GPU, and 53GB of

machine RAM. There are other frameworks for training available such as TensorFlow, and Caffe.

However, to maintain compatibility with the FINN tools, our method uses PyTorch to train the

NN model and uses the Brevitas [72] tool to quantize the model. The model is then converted

from .npz to .onnx format which is ready for deployment on the FPGA. The model is trained

with the ILSVRC12 dataset. The ILSVRC12 dataset is a sub-dataset derived from the entire

ImageNet dataset. This dataset contains a training dataset for training the NN, a validation

dataset for validating the accuracy of the NN after training, and a test dataset for testing the

NN performance in practical applications. There are 1000 different categories of photographs in

the training dataset, totaling 1281167. Each category has 732 to 1300 images. The validation

dataset contains 50,000 images, 50 of each category. As the figure shown in Figure 3.1, most of

the computing layers of the NN (Binarized Neural Network) are executed on PL. However, the

first (initial) convolutional layer and fully connected layers (FC layers) are not quantized and

will be executed on the PS. A study on DoReFa-Net [9] shows that approximately 18% of accuracy

degradation can be observed if the first convolutional layer and FC layers are quantized. Hence,

in this chapter, the first convolutional layer and FC layers will not be quantized. The uncertainty

evaluation module is also deployed on the PS since the operations inside the evaluation module

consist of comparisons instead of arithmetical computations. Hence, it is more feasible to deploy

it on the PS since PL is designed for numeral operations.

PYNQ-Z2 FPGA

Input
Webcam

Image

Processing System

Capture

Programmable Logic
Binarized Neural Network

output
Initial Conv

Layer

Uncertainty
Evaluation

FC Layers

FIGURE 3.1. Overview of the system
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3.2.1 NN Analysis

The NN model structure in this chapter is based on the original Alex-Net. The original work of

Alex-Net with 32 bits full-precision floating point layers reached 63.3% Top-1 accuracy and 84.6%

Top-5 accuracy [73]. This achievement in accuracy relies on the following strategies.

3.2.1.1 Normalization

Deep neural networks use normalisation to accommodate for the boundless characteristic of

certain activation functions like ELU, ReLU, and others. The output layers of these activation

functions are not confined to a bounded range, but can instead go as high as the training allows.

Normalization is employed shortly before the activation function to prevent unbounded activation

from boosting the output layer values. The Local Response Normalization, known as LRN, was

first introduced in the Alex-Net NN model. The LRN layer is a non-trainable layer that square-

normalize pixel values in a feature map within a local neighborhood. In Alex-Net, the Rectified

Linear Unit (ReLU) was introduced as an activation function rather than the more common tanh

and sigmoid functions. the general expression of ReLU can be written as fReLU (x)= max(0, x).

The advantage of ReLU is that it will learn even if only a small percentage of training samples

are activated. However, the fact they are unbounded is a disadvantage. As a solution, the weight

of the NN is maintained and kept in check, while the inter-channel LRN shown in Figure 3.2 is

introduced to bring out better characteristics as the following equation:

bi
x,y =


ai

x,y

(k+α
min(N−1,i+( n

2 ))∑
j=max(0,i−( n

2 ))
(a j

x,y)2)β

 [21]

Figure 3.2 shows 4 steps of the LRN process on a layer. The kernel of LRN moves 1-bit in

every step so all parameters (pixels) can be normalized. The value of the normalizing parameter

(dark blue) will influence the value of its neighbour parameters (light blue). The formula above

demonstrates the normalization performed in the in-depth dimensions for every (x, y) coordinate.

N is the total number of kernels in each layer, and the sum runs across n neighbouring kernel

mapping at the same spatial point. The square operation inside the sum operation is used to

cancel the positive and negative effects of the value of weights. In order to maintain the value

of the activation in the numerator, the α is multiplied in front of the sum operation to reduce

its value compared with the numerator. In an extreme case when α is too low, it results in the

exploding gradient. k is added as a positive constant to avoid the zero division error. At last, in

order to determine the impact of this local response on the activation in question, β is used as an

exponent. A higher value will penalise the activation with regard to its neighbours more, whereas

a lower value will not have a significant impact on the activation with respect to its neighbours.
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FIGURE 3.2. Process of inter-channel LRN

3.2.1.2 Overlap MaxPooling

Figure 3.3 shows the traditional pooling strategy, a 2×2 sized filter is applied with the stride=2

in this illustration. It can be seen that the filter will capture the sample from the input for every

2 pixels. So there is no overlapping among every sampling done by the filter. Hence the number

of rows and columns of the output after this MaxPooling layer will be halved. While Figure 3.4

shows a novel pooling method applied in the Alex-Net called overlap pooling. The size of the filter

remains 2×2 but the stride in this method is changed to 1. So there will be intersections in each

neighboring output. The boundary of objects in the image is vital during the image classification

process as it defines the location and the scale of the objects. Since the outputs of the non-overlap

pooling are irrelevant, there will be certain dimensional information lost since only the highest

values of the input will be reserved after pooling. This will result in blurring in object boundaries

since boundaries can only be clearly identified with significant color changes, which reflects

significant differences in terms of weight. However, Figure 3.4 shows that overlap pooling could

preserve low-value weights among the surrounded high-value parameters. This is because the

output is a result of both neighbor parameters so it will be better conserved.
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FIGURE 3.3. An example of general pooling without overlap
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FIGURE 3.4. An example of general pooling with overlap

3.2.2 NN Quantization

The size of modern networks is increasing with the complexity of problems and this increasing

scale makes modern NNs inefficient to deploy on edge devices. Hence, quantization is proposed

to compress the volume of NN models by lowering the bits used to represent parameters from

32-bit floating point to low-bit (usually lower than 8 bits) integers. Model quantization mainly

includes two parts in the existing methods: weight quantization and activation quantization.

The existing SYQ NN model [74] proves that the 8-bit quantization on ResNet-18 has achieved

comparable accuracy with 32-bit floating points (67.7% and 69.3% respectively). The principle

operation inside the convolutional layer is the multiplication of weight (W) and activation (A)

W × A. Hence, if one of the weight and activation is quantized to 1 bit i.e.{0,1}, the multiply

operations are simplified to bitwise operations. If both the weight and activation are quantized to

1 bit. Then the multiplication will be simplified as XNOR and zero-counting operations, which is

very suitable for hardware accelerations.

The approach of this chapter learns from the quantization method of DoReFa-Net [9]. The

DoReFa-Net will quantize both weight and activation into low bitwidth. The advantages of

DoReFa-Net are not only the inference process will be accelerated because of the quantization of

weight and activation. But also the training procedure is accelerated since the gradient of the NN

model is also quantized. Hence the DoReFa-Net-based NN model is applicable for GPU training

for better training time efficiency. Since the NN model in this approach is based on the ImageNet

dataset which contains millions of coloured pictures with the size of 224×224×3. It is vital to

apply the GPU-accelerated training. Otherwise the CPU training will be too inefficient per epoch.

A pure CPU training approach is tested at the initial period of the experiment and it takes 56

hours to train a single epoch, which is unacceptable.

The weight quantization in this approach is able to be demonstrated as follows:

ro = f k
w(r i)= 2quantizek( tanh(r i)

2max(|tanh(r i)|) +
1
2 )−1
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where k is the targeting bits of quantization, the value of f k
w(r i) is limited between {−1,1}.

In contrast, the first step of activation quantization is limiting its value {−1,1} instead of

quantizing. Then, the activation will be quantized to the targeting bits. The equation of activation

quantization is shown below:

f k
a (r)= quantizek(r)

When quantizing the gradient, random quantization is a more effective method since the

gradient is not like the activation value that can be limited to a certain range, the magnitude

of the gradient value may be relatively large in some positions. The activation value can pass

through an activation function, so it can limit the size of the value. The equation of gradient

quantization is:

f k
γ (dr)= 2max0(|dr|)[quantizek[ dr

2max0(|dr |) +
1
2 +N(k)]− 1

2 ]

Random quantization is able to be realized by adding a noise function N(k) = σ
2k−1 where

σ∼Uni f orm(−0.5,0.5), which is critical to achieving the good performance.

Hence, DoReFa-Net does not specify how many bits to quantize but can be quantized to any

bit. Since the input data layer of the entire network has fewer channels, it has less impact on the

overall network complexity, so the weight of the first convolutional layer is not quantized and

remains floating point [9], and the output activation value of the first convolutional layer will be

quantized. If there are few output categories, the weight of the last convolutional layer is not

quantized, and the inverse gradient of the last layer needs to be quantized.

3.2.3 Early-exit NN Topology and Training

The early-exit system contains a primary NN and an early-exit branch and both are mapped to

a Xilinx Zynq-7020 SoC PYNQ-Z2 FPGA board. As shown in Figure 3.5 and Figure 3.6, every

sample will go through some layers of the NN for initial inference until it reaches a junction.

An evaluation will be performed to compare the current entropy of the sample with the entropy

obtained in the previous primary network training. The entropy, also known as Shannon’s entropy,

is defined as: entropy (y) =∑
l∈L yl log2 yl , where y is a vector that contains probabilities of all

possible classification labels and l contains all possible classification labels. If the current entropy

is smaller than the entropy of the primary network, the sample will go through the early-exit

network for further inference and present the result with maximum probability. If not, the sample

will go through the primary network and the label with maximum probability will be returned.

The inferring system will repeat the same procedure and continue in a loop after the classification

result of the latest input image has been produced. The uncertainty evaluation algorithm is

demonstrated as follows:

r = fexit (x)

24



3.2. APPROACH

y= sof tmax (r)
e = entropy(y)

if e < eT then

return argmax(y),

where fexit is the output of the network and eT is the entropy of training. The early-exit

network system follows the same procedure for every image inference.

Yes

Branch Network Primary Network

No

System Output

Input Image
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FIGURE 3.5. The flow chart of the primary and early-exit configuration of NN system
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Time
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FIGURE 3.6. The processing timeline for the system

Figure 3.7 shows the structure of the primary and early-exit NNs. The primary network

structure is based on Alex-Net and the early-exit network is a pruned version of the primary

network with fewer convolutional layers and FC layers. Both primary and early-exit networks
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share the same data structure at the initial inference part of the NN. In order to improve the

efficiency of the network after being deployed on the PYNQ-Z2 board, the NNs are trained

with 1-bit weight and 2-bit activation using a similar technique as DoReFa-Net (an improved

fully-quantized model will be demonstrated in Chapter 4). Due to this significant accuracy loss

discussed above, we choose not to quantize the first convolutional layer and all FC layers and use

floating-point arithmetic instead.

The first layer is connected to the image input which contains 8-bit pixels and the FC layers

produce a one-hot vector output. The primary network was trained initially for 35 epochs, while

the early-exit network was trained afterwards using the pre-trained model from the primary

network using transfer learning techniques. Thus, instead of training the entire early-exit

network, the initial layers of NN can be directly used from the pre-trained primary network.

Only the layers that are different from the primary network need to be trained from scratch. This

design makes the early-exit system achieve better integration, flexibility, and ease of modification

for any further enhancement and development. The accuracy and entropy loss of both the primary

and the early-exit branch networks are shown in Figure 3.8. The primary network reaches 52.29%

of Top-1 accuracy and 63.62% of Top-5 accuracy, while the early-exit network reaches 48.17% of

Top-1 accuracy and 59.38% Top-5 accuracy after 35 epochs of training. Although it is clear that

the early-exit branch network is less accurate than the primary network. However, the overall

executing efficiency of the system improves, since the number of execution layers is lower. In

addition, the confidence evaluation strategy will further reduce the drop in terms of accuracy.
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FIGURE 3.8. The test accuracy and entropy of the primary network (a) and early-exit
branch network (b)

Tables 3.1 and 3.2 show the parameter details of the early-exit system. The parameters of the

early-exit branch network are about 6.3 million, which is one-tenth of the primary network that

has more than 60 million parameters. It is also apparent that the majority of the parameters of
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the primary network are concentrated in the three FC layers. Hence, two important approaches

that can be used to simplify the primary network are to reduce the number of FC layers and to

increase the density of the convolutional layer in front of the FC layer, in order to reduce the

number of input parameters to the FC layer, as demonstrated in Figure 3.7.

TABLE 3.1. Parameter details of primary model

Primary Model
Layer name(type) Kernel Shape No. of Parameters

input (InputLayer) [224, 224, 3, 1] 0
PS Execution conv0/W (Conv2D) [12, 12, 3, 96] 41472

conv0/b (BatchNorm) [96] 96
conv1/W (Conv2D) [5, 5, 48, 256] 307200

bn1/gamma (BatchNorm) [256] 256
bn1/beta (BatchNorm) [256] 256

conv2/W (Conv2D) [3, 3, 256, 384] 884736
bn2/gamma (BatchNorm) [384] 384

bn2/beta (BatchNorm) [384] 384
conv3/W (Conv2D) [3, 3, 192, 384] 663552

bn3/gamma (BatchNorm) [384] 384
PL Execution bn3/beta (BatchNorm) [384] 384

conv4/W (Conv2D) [3, 3, 192, 256] 442368
bn4/gamma (BatchNorm) [256] 256

bn4/beta (BatchNorm) [256] 256
fc0/W (FullyConnected) [9216, 4096] 37748736

fc0/b (BatchNorm) [4096] 4096
bnfc0/gamma (BatchNorm) [4096] 4096

bnfc0/beta (BatchNorm) [4096] 4096
fc1/W (FullyConnected) [4096, 4096] 16777216

bnfc1/gamma (BatchNorm) [4096] 4096
PS Execution bnfc1/beta (BatchNorm) [4096] 4096

fct/W (FullyConnected) [4096, 1000] 4096000
fct_b/b (BatchNorm) [1000] 1000

Number of trainable layers: 23
Number of parameters: 60985416
Number of trainable parameters: 60985416

3.2.4 FPGA Optimization and Deployment

After training the NNs, the FINN framework is used in order to deploy the NNs on the PYNQ-Z2

platform using a multi-layer offload architecture. The process of deployment is shown in Figure 3.9.

Brevitas is applied to achieve NN quantization. Brevitas is a PyTorch library for quantization-

aware training (QAT). Although PyTorch has already quantized the NN, the quantization in
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TABLE 3.2. Parameter details of early-exit branch

Early-exit Branch Model
Layer name(type) Kernel Shape No. of Parameters

input (InputLayer) [224, 224, 3, 1] 0
PS Execution conv0/W (Conv2D) [12, 12, 3, 96] 41472

conv0/b (BatchNorm) [96] 96
conv1/W (Conv2D) [5, 5, 48, 256] 307200

bn1/gamma (BatchNorm) [256] 256
bn1/beta (BatchNorm) [256] 256
conv2_s/W (Conv2D) [3, 3, 256, 384] 884736

PL Execution bn2/gamma (BatchNorm) [384] 384
bn2/beta (BatchNorm) [384] 384

conv5/W (Conv2D) [3, 3, 384, 96] 331776
bn5/gamma (BatchNorm) [96] 96

bn5/beta (BatchNorm) [96] 96
PS Execution fct_s/W (FullyConnected) [4074, 1000] 4074000

fct_s/b (BatchNorm) [1000] 1000

Number of trainable layers: 13
Number of parameters: 6271752
Number of trainable parameters: 6271752

PyTorch only targets CPU backends and Brevitas has been designed to target FPGA and Data

Processing Unit (DPU) backends. Thus, the trained model needs to be imported to Brevitas to

convert the quantization format to target the FPGAs backend. Then, the NN model is imported

to FINN using the ModelWrapper. The next step is to convert the network layers that will be

deployed on the FPGA into their HLS equivalent by calling the FINN HLS library so they are

available for Vivado HLS synthesis. After this step, the network model is ready for hardware

generation. The ZynqBuild function is applied to complete the hardware generation step. Finally,

the DeployToPYNQ script is called to deploy the hardware to the PYNQ-Z2 FPGA board.

After deployment on the PYNQ-Z2 FPGA board, we can identify three distinct stages in the

NN:

1. The first part is the first convolutional layer. At this stage, the network layer will be purely

software execution since it has not been quantized. The hardware accelerator (PL) is only

capable of running the QNN model. Hence, we deployed the first part on the PS side of

FPGA.

2. The second part is formed by all layers located in front of the FC layers for both primary

and early-exit branch networks. This part consists of convolutional layers and max-pooling

layers. These core layers are the critical elements of hardware acceleration. Thus, they will

be executed in the PL.
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FIGURE 3.9. The deployment procedure of NN on the PYNQ-Z2 FPGA

3. The final part includes the FC layers for both primary and early-exit branch networks.

These layers are not quantized so they will be once again, executed in PS in python to

finalize the classification and output the result.

Table 3.3 shows the utilization of PL resources which is close to the maximum, especially

the Block RAMs. Therefore, the hardware accelerator is maximizing the utilization of the FPGA

device.

TABLE 3.3. Utilization report on PYNQ-Z2

LUTs FlipFlops Block RAMs DSPs
45328 (85%) 39740 (37%) 139 (99%) 65 (30%)

3.3 Performance & Accuracy Evaluation

To test the performance, 1000 images randomly extracted from the ILSVRC12 testing dataset

is prepared. Since the execution time for inferring an image is similar, there is no need to test

the entire image collection in the ILSVRC12 testing dataset. Figure 3.10 (a) shows the execution

time evaluation for the early-exit NN system. As shown in Figure 3.10 (a), there is no significant

difference in execution time for the first convolutional layer since there is no difference between

the primary network and the early-exit network in this part.

The execution time of the PL offloaded layers in the early-exit network is about 20ms less

than those in the primary network. It is also demonstrated that FPGA has a significant hardware

30



3.3. PERFORMANCE & ACCURACY EVALUATION

684.96

64.76

485.77

681.75

44.36

197.26

0

100

200

300

400

500

600

700

800

First Conv Layer PL Offload Layers FC Layers

Time (ms)

Primary Network Early-exit Branch Network

(a)

1235.48

923.37

0

200

400

600

800

1000

1200

1400

Primary
Network

Early-exit
Branch

Network

Time (ms)

(b)

FIGURE 3.10. The time costs comparison for each part of networks (a) and The total
time cost comparison of networks (b)

acceleration effect as the time consuming for multiple convolutional layers executed in PL is much

less than a single convolutional layer executed in PS. For the FC layers, the early-exit network

takes less than half the time of the primary network. The overall time cost of the early-exit branch

network is 1.34× lower than the primary network as can be seen in Figure 3.10 (b). Although the

FC layer contains most of the parameters in the NN shown in Table 3.1 and Table 3.2, it requires

less computation compared to the convolutional layer. It can also be observed that the execution

time of the convolutional layer and FC layers on the PS are not proportional to the number of

parameters in the corresponding layers.

Figure 3.11 compares the time cost and MOPS on the PS and PL. More than 90% of the

execution time is on the PS. Binarized network layers executed on the PL achieve a performance

of 16581.74 MOPS for the primary network. The performance of the PL when the early-exit

branch network is executed is 14283.85 MOPS. On the other hand, the PS only achieves 197.38

MOPS maximum.

To validate the hardware acceleration, we also execute the entire NN system on the PS only.

Figure 3.12 compares the time cost of the network executed using pure software versus hybrid

deployment. It can be calculated that the acceleration rate for this NN is about 356×. This is

because the layers that are implemented onto the PL are quantized as BNN layers. Also, thanks

to the multi-layer offload architecture, all layers executed in PL will be implemented one-time.

This allows all the network layers parameters to be stored in the initial memory of the PL without

accessing the external memory. Moreover, BNNs eliminate the need for multi-bit multiplication

operations, which is also a highly efficient optimization targeting FPGA backends.

To verify the accuracy of the early-exit system, we used the validation dataset of ILSVRC12.
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The accuracy is compared between executing just the primary network and deploying both

the primary network and the early-exit branch network for inference. Table 3.4 highlights the

threshold value, exit rate, and gain in terms of acceleration of the early-exit network system. The

threshold value is set at 0.14, which is approximately the same as the entropy loss of the primary

network during the training session referring the entropy value of the 35th epoch of primary

network training shown in Figure 3.8 (a). The results indicate that the early-exit system is 1.2×
more efficient compared to the network without an early-exit branch. There is also a trade-off

between network accuracy and time efficiency. An accuracy decrease of 1.56% can be calculated
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from Table 3.4, which is lower than the original accuracy difference between the primary network

and the early-exit branch network.

TABLE 3.4. The accuracy result for the primary network, the branch network, and the
early-exit system

Networks Accuracy Time (ms) Gain Threshold Exit Rate
Primary Network Only 51.83% 1238.65 - - -
Branch Network Only 47.36% 930.83 - - -

Early-exit System 50.27% 1032.22 1.2× 0.14 65.68%

3.4 Conclusion

In this chapter, an early-exit system with a primary network and an early-exit branch network

that achieves better performance compared to using the primary network on its own is presented.

The PyTorch framework is applied for NN training and Brevitas is applied for NN model con-

version. The quantized (partly binarized) NN model is deployed using the FINN framework for

dataflow optimization onto the target PYNQ-Z2 FPGA backend.

The deployed NNs on the PL achieve a 356× acceleration rate with comparable accuracy to

the original primary network. The topology of the early-exit branch network further improves

the processing rate by 1.34× compared to the primary network. The overall system is 1.2× more

efficient compared to just using the primary network with a minor accuracy drop of 1.56%.
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4
EARLY-EXIT NN OPTIMIZATION

This chapter is concerned with the NN optimization and FPGA deployment optimization

based on the outcome of Chapter 3. Chapter 3 has already demonstrated a complete

design throughout NN to FPGA hardware acceleration. However, on the one side, the

PL illustrates the excellent potential of the acceleration effect as multiple convolutional layers

which contain most of the computational load are executed in the PL in less than 10% of the total

inference time. On the other side, this would be improved further if the first convolutional layer

and fully connected layers are quantized and deployed on the PL.

4.1 Problem Description

The previous research on DoReFa-Net [9] claims that a significant reduction of inference accuracy

will occur if the first convolutional layer is quantized to 1-bit binary. Hence in this chapter,

other methods of quantization will be applied to compensate for the accuracy loss of the entire

NN model. Furthermore, other methods of fine-tuning the NN network will also be attempted.

The intention of the final design approach is to find an optimal balance between accuracy and

inference speed.

The hardware system is shown in Figure 4.1. The improved system will deploy the full

NN on the PL of the FPGA board for hardware accelerations with the exception of the uncer-

tainty evaluation module since this module mostly contains mathematical comparison instead of

computation.
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FIGURE 4.1. The overview of the system with the optimized NN

4.2 Approach

4.2.1 Non-quantized Layers Optimization

In order to investigate the impact of binarized first convolutional layer and Fully-connected

layers on the NN accuracy, a quantization experiment is carried out on the primary network.

Figure 4.2 shows the comparison of accuracy among both the quantized first convolutional

layer and FC layers, quantized first convolutional layer only, and non-quantized on the primary

network. From the figure it is clear that the quantization of the first convolutional layer will

significantly decrease the total NN model accuracy. With both first convolutional layer and FC

layers quantized to 1-bit weight and 2-bit activation, the Top-1 accuracy of the model is only

28%, which is unacceptable. By contrast, the accuracy reduction caused by the quantization of

FC layers is less with the Top-1 accuracy decrease from 52.29% to 49.76%. There is another

phenomenon needed to be noticed that even though the Top-1 accuracy decrease caused by the

binarization of the first convolutional layer is significant from 52.29% to 28%. However, the

Top-5 accuracy is not degraded exceptionally (from 63.62% to 51.47%). This indicates that the

binarized first convolutional layer does not cause the NN model lost the ability of recognizing

the sample pictures but only degrades the NN precision. Hence, the main idea of improving the

accuracy of the fully-binarized NN is to quantize the first convolutional layer to low bits instead

of one-bit binarized to reserve more information for further inference. Since the early-exit branch

network has the similar structure and shares some same layers with the primary network, all

the experiments of accuracy improvement will be performed on the primary network, and the

early-exit branch network will follow the same strategy as the primary network does.

Since the quantization for NN layers includes weight quantization and activation quantiza-
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FIGURE 4.2. The comparison of accuracy on different binarized layers of NN

tion, the following subsection will show the experiment result for each weight quantization and

activation quantization to find out which influences the NN model accuracy more and determine

the best combination.

4.2.1.1 Weight Quantization

The experiment on weight quantization is undertaken with the exact same scenario but only

changes the bits of weight quantization. The activation of the first layer during this experiment is

quantized to 1 bit, and the fully-connected layers are binarized. The experiment was executed in a

range of bitwidths from 1 bit (binarized) to 4 bits for the weights. All of the NNs with different bits

are trained for 35 epochs. Figure 4.3 demonstrates the accuracy change with different bitwidth

weights. The training detail is attached in Appendix B.1. From the figure it can be seen that

the accuracy is significantly improved from 28% to 35.07% when the quantization bitwidth is

changed from 1 bit to 2 bits. The accuracy improvement effect with higher bitwidth gradually

reduces as the accuracy increases between 2 bits and 3 bits reducing to 2.35% from 35.07% to

37.42%. The accuracy enhancement compared 3 bits and 4 bits only 1.24% improvement from

37.42% to 38.66% is observed.

If accuracy is the only factor taken into the consideration, it is obvious that higher bitwidth

results in higher NN inference accuracy. However, it is noticeable that every increase in bitwidth

results in an increased amount of computation while executing in the PL since logic elements

inside the PL can only do a single bitwise computation at a time. Hence, to balance the NN

inference efficiency and accuracy, the weight of the first convolutional layer will be quantized to 2
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FIGURE 4.3. The comparison of Top-1 accuracy with different quantization bits of
weight

bits as this offers significant accuracy improvement for reasonable computational cost.

4.2.1.2 Activation Quantization

The experiments targeting activation quantization are similar to the procedure for weight

quantization. However, since the weight quantization has already been decided in the last section,

this experiment is carried out on the basis of 2-bit quantized weights. Figure 4.4 shows the

result of accuracy with different quantization bits of activation. The accuracy behavior in this

experiment is similar to the weight experiment. The accuracy increases sharply with a gain of

8.25% from 35.07% to 43.32% when the bitwidth of activations is changed from 1 to 2. However,

the accuracy only improves approximately 1% when the activation is quantized to 3 bits and 4 bits,

with 44.86% and 45.89% respectively. Similarly, to achieve the best accuracy and NN execution

efficiency at the same time, 2-bit quantization will be chosen for the activation quantization

of the first convolutional layer. The training detail for this activation experiment is shown in

Appendix B.2.

Following those two experiments presented above, the accuracy of the primary network

now improves from 28% to 43.32%, which is close to the accuracy of the NN with binarized FC

layers only with an accuracy of 49.76%. It demonstrates the effectiveness of maintaining the

accuracy of the low-bitwidth quantization method targeting the first convolutional layer since

the selected NN with a quantized first convolutional layer with 2 bits weight and activation can

achieve comparable prediction accuracy as its original fully-precision structure with around 6%

of accuracy drop.
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FIGURE 4.4. The comparison of Top-1 accuracy with different quantization bits of
activation

4.2.2 Stride Optimization and Dropout

To further improve the accuracy of the NN, another optimization method is applied. It is noticed

that the stride of the first convolutional layer is equal to 4, which means the kernel will skip

4 pixels every time it samples data. The first convolutional layer is the most vital layer for the

entire NN inference accuracy since the first convolutional layer directly connects to the image

input. Hence, the more information that can be preserved in the first convolutional layer, the

better the accuracy that can be achieved. However, every forward step change of stride, for

example, from 4 to 3, results in doubling the number of parameters in the first FC layer as the

dimensions of the first FC layer depend on the size of the layer connected in front of it, and this

kind of change doubles the size of the output of the pool4 layer. This will be extremely problematic

because on the one side, from Table 3.1 it can be seen that the number of the parameter in the

first FC layer is more than 3.7 million, which is more than half of all the parameters of the entire

NN. Hence if the parameters of this layer are doubled, the training efficiency of the entire NN

will be halved. On the other hand, it will become problematic to deploy an early-exit NN system

with this scale of parameters on the targeted low-complexity PYNQ-Z2 FPGA board.

In order to resolve this issue, a new max-pooling layer is introduced acting as a dropout layer

in the front of the first FC layer to concentrate the number of neurons to the same amount as

before the stride change. A dropout approach is also applied in the original Alex-Net to prevent

the NN from overfitting by multiplying every hidden neuron with zero with a probability of 0.5,

which results in half of the neurons having a value of 0. The demonstration of the mechanism

of the dropout layer is shown in Figure 4.5. However, the drawback of this approach is that the

neurons with a value of 0 do not disappear physically but they only take the value zero. Although

the neuron will not contribute to the forward pass, it still exists in the NN. This not only will
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Before pruning After pruning

FIGURE 4.5. A pattern of the working mechanism of a dropout layer

have no change to the size of the NN but even add an additional computation procedure for

every epoch of training. The authors of Alex-Net also admit that dropout roughly doubles the

number of iterations required to converge [21]. In our approach, the output of the newly added

max-pooling layer reduces the dimensions of the output size. Hence, the new max-pooling layer

in this approach is able to reduce the complexity of the NN.

To explore how the change of stride of the first convolutional layer affects the accuracy of the

NN, a set of experiments with a range of stride from 4 to 1 were carried out. Figure 4.6 compares

the accuracy results with different strides. All the NN samples are trained for 35 epochs. The

effect of stride changing is significant in terms of the inference accuracy as an increment of

approximately 5.5% is achieved for each step of the stride change from 4 to 2, and 53.64% Top-1

accuracy is achieved with a stride of 2. When the stride is 1, the accuracy increases to 55.51% with

43.32%

48.89%

53.64%

55.51%

40.00%

45.00%

50.00%

55.00%

60.00%

Stride=4 Stride=3 Stride=2 Stride=1

Accuracy

FIGURE 4.6. The comparison of Top-1 accuracy with different strides
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a step increment of 1.87%, which is much less significant compared with the previous changes.

At the same time, although the extra max-pooling layer solves the issue of exponential growth

of parameters, the size of the output of each computational layer cannot be reduced, which will

also occupy massive RAM on the board. Hence, the efficiency improvement for the stride = 1 is

considered a negative trade-off between the accuracy and the NN scale. Thus, the stride of the

first convolutional layer is chosen to be 2 for the optimal solution with the best balance.

4.2.3 NN Topology & Training

After all the optimization experiments, the optimized NN achieves better accuracy compared

with the NN model in Chapter 3 with 1% of accuracy improvement with low-bit quantized first

convolutional layer and FC layers with 35 epochs of training. The new NN combines all the

improvements together and requires training from scratch. The NNs are trained with 2-bit

weight, 2-bit activation, and stride = 2 for the first convolutional layer, and 1-bit weight and 2-bit

activation for the rest of the layers including all the FC layers.
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FIGURE 4.7. The Top-1 and Top-5 accuracy comparison of the primary network after 35
epochs of training (a) and after 60 epochs of training (b)

The structure of the improved early-exit NN system is shown in Figure 4.8. The primary

network is still trained for 35 epochs initially and it achieves 53.64% of Top-1 accuracy and

65.28% of Top-5 accuracy. However, it can be observed that the accuracy in the last few epochs

still increases relatively fast from Figure 4.7 (a), which indicates further accuracy improvement

is applicable with more epochs of training. It is explainable as the stride number of the first

convolutional layer is changed from 4 to 2, which means doubled size will exist in the rest of the

layers. Then the entire NN will require more epochs of training to "understand" completely. Thus,

the primary network training is extended to 60 epochs. Equally, the early-exit branch network is

also trained for 60 epochs. Figure 4.7 (b) shows the final result of both the primary network and
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the early-exit branch network. It can be seen that the Top-1 accuracy and Top-5 accuracy of the

primary network achieve to 59.38% and 72.81%, while the early-exit branch network reaches

53.14% of Top-1 accuracy and 65.64% of Top-5 accuracy.

4.2.4 FPGA Deployment

The technical procedure of the implementation of NN to FPGA is the same as the approach in

Chapter 3. However, the entire NN is deployed on the PL side of the PYNQ-Z2 board. Table 4.1

shows the utilization of resources inside the PL for the optimized NN deployment. It can be seen

that the LUT usage has increased significantly and is close to its maximum compared with the

previous approach in Table 3.3 as the output size of each layer is enlarged. Also, there are more

layers deployed on the PL side which also increases the LUT utilization since the multi-layer

offload architecture will execute all layers at the same time. In the meantime, the usage of DSP

blocks decreases. The DSP blocks are mainly responsible for complex operations, such as multi-bit

multiplications. The first convolutional layer and FC layers are quantized to low bitwidth, which

significantly reduces the complexity of computation compared with the previous fully-precision

layers.

TABLE 4.1. Utilization report on PYNQ-Z2 with enhanced neural network executed

LUTs FlipFlops Block RAMs DSPs
51632 (97%) 42538 (40%) 139 (99%) 69 (32%)

4.3 Evaluation

4.3.1 Entropy Threshold Evaluation

In this section, we evaluated the efficiency and accuracy obtained when changing the entropy

value for the uncertainty evaluation module. Figure 4.9 shows how the change of entropy affects

the percentage of samples exiting at the early-exit branch, as well as how it affects the frequency

that the system chooses to select the early-exit branch. It shows that there is an inflection point

of entropy value which indicates a rapid decrease in terms of accuracy. Hence, it can be deduced

that the value of the inflection point of the entropy value will be a trade-off to satisfy inference

time-efficiency while maintaining accuracy. In the rest of the paper, we set the threshold value to

0.14 for further evaluation that corresponds to the inflection point.

4.4 Camera Input Evaluation

In this section, we verify that the system is able to adaptively select the optimal branch of the NN

according to the different camera angles while classifying the same object. Our demonstrator is
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FIGURE 4.8. The optimized version of primary and early-exit model topology
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FIGURE 4.9. The overall accuracy of the heterogeneous NN with varying entropy
threshold

based on a Logitech C160 webcam Figure 4.10 demonstrates examples of the network usage and

classification results for our early-exit system on the same object but with different camera angles.

The results were obtained with the early-exit branch enabled and entropy= 0.14. Figure 4.10

clearly shows that the system presents the correct results of the car model in all camera angles,

with the exception of Figure 4.10 (e). We can see that the system chooses the branch network

while it classifies the picture Figure 4.10 (a) and (b) and outputs the correct results. The primary

network is applied for inferring the picture Figure 4.10 (c) and (d). The system failed to infer the

picture Figure 4.10 (e) with an extreme shooting angle with the primary network. All the NN

models are trained for 60 epochs on the same device.

4.5 Performance and Accuracy Evaluation

To test the performance, we prepared 100 images randomly captured from the Logitech C160

webcam. Figure 4.11 shows the execution time evaluation for the early-exit NN system. As

shown in Figure 4.11 (a), The majority of the execution time in this NN model is spent in the

FC layers. Thanks to the pruned network layers in the branch network, the execution time of

the convolutional layers in the branch network is 1.43× faster than the primary network and is

2.44× faster than the primary network in terms of the FC layers. The overall time cost of the

early-exit branch network is 2.08× lower than the primary network, which achieved 146.27ms

and 304.75ms respectively as can be seen in Figure 4.11 (b). Figure 4.11 (b) also compares the
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network:     branch
class:          sports car probability:  60.34%
class:          racing car      probability:  25.57%
class:                 cab probability:  10.80%
class:                jeep probability:   2.18%
class:           limousine probability:   1.11%

(a)

network:      branch
class:          sports car probability:  89.48%
class:               wagon      probability:   7.34%
class:           limousine probability:   1.67%
class:                 cab probability:   1.03%
class:             minivan probability:   0.48%

(b)

network:    primary 
class:          sports car probability:  64.38%
class:          racing car      probability:  32.63%
class:           limousine probability:   1.26%
class:        pickup truck probability:   0.99%
class:             minivan probability:   0.74%

(c)

network:    primary
class:          sports car probability:  50.12%
class:          racing car      probability:  43.68%
class:               wagon probability:   2.37%
class:             minibus probability:   1.98%
class:          moving van probability:   1.85%

(d)

network:    primary
class:               truck probability:  38.46%
class:          sports car      probability:  35.91%
class:        pickup truck probability:  20.51%
class:             minivan probability:   3.20%
class:          racing car probability:   1.92%

(e)

FIGURE 4.10. Inference results of an object with different camera angles

45



CHAPTER 4. EARLY-EXIT NN OPTIMIZATION

execution speed between the initial NN and the optimized NN. It can be seen that after the

optimization, the processing speed of the primary network and the branch network are about

4× and 6× faster than the original. Although the FC layer contains most of the parameters in

the NN, it requires less computation compared to the convolutional layer. It can also be observed

that the execution time of the convolutional layer and FC layers on the PS are not proportional

to the number of parameters in the corresponding layers.
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FIGURE 4.11. The time costs comparison for each part of networks (a) and The total
time cost comparison of networks (b)

Figure 4.12 compares the MOPS of the primary network and branch network. Binarized

network layers executed on the PL achieve a performance of 16167.29 MOPS for the primary

network. The performance of the PL when the early-exit branch network is executed is 14452.86

MOPS.

To validate the hardware acceleration, we execute the entire NN system on the PS only with

the same 1000 randomly extracted pictures from the ILSVRC12 dataset as at the beginning of

Section 3.3. Also, we make an initial comparison set up for our NN on an Intel i5-9300H 8-core

CPU machine at 45W Thermal Design Power (TDP) and an NVIDIA RTX2060 GPU machine

at 160W TDP by executing the original PyTorch validation code. Table 4.2 compares the time

cost of the network executed on the various devices described above. It can be calculated that

the acceleration rate for this NN is about 350× if the whole NN is executed on the PS. When

the NN is tested on the Intel CPU, the time consumption is more than twice compared with

PL. The execution time on the GPU is very close to the PL with several milliseconds ahead.

This achievement is significant in both time efficiency and power efficiency since the power
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FIGURE 4.12. The MOPS comparison for primary network and branch network

TABLE 4.2. Heterogeneous NN performance comparison on selected devices

Device PS on PYNQ-Z2 i5-9300H CPU RTX2060 GPU PL on PYNQ-Z2

Time(ms) 78,710.55 548.86 218.33 224.52

Gain 350.57× 2.44× 0.87× 1×

consumption of a GPU is dozens of times that compared with an FPGA board, but they achieve

similar execution speeds. This is because the layers that are implemented onto the PL are

quantized as BNN layers. This allows all the network layer parameters to be stored in the initial

memory of the PL without accessing the external memory. Moreover, BNNs eliminate the need

for multiplication operations replacing them with XORing and zero-counting logic, which is also

a highly efficient optimization targeting FPGA backends.

To verify the accuracy of the early-exit system, we used the validation dataset of ILSVRC12.

The accuracy is compared between executing just the primary network and deploying both

the primary network and the early-exit branch network for inference. Table 4.3 highlights the

threshold value, exit rate, and gain in terms of acceleration of the early-exit network system. The

threshold value is set at 0.14, which is approximately the same as the entropy loss of the primary

network during the training session. The results indicate that the early-exit system is 1.22×
more efficient compared to the network without an early-exit branch. There is also a trade-off

between network accuracy and time efficiency. An accuracy decrease of 1.64% is observable in

Table 4.3, which is lower than the original accuracy difference, and between the primary network

and the early-exit branch network.
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TABLE 4.3. The performance result for the primary network, the branch network, and
the early-exit system

Networks Accuracy Time (ms) Gain Threshold Exit Rate

Primary Network Only 58.74% 304.75 - - -
Branch Network Only 52.76% 146.27 - - -

Early-exit System 57.10% 250.36 1.22x 0.14 65.68%

4.6 Conclusion

In this chapter, we presented an early-exit system with a primary network and an early-exit

branch network applied to a binarized neural network to improve overall system performance.

The PyTorch framework was used for NN training and Brevitas was applied for NN model

conversion. The quantized (partly binarized) NN model is based on the FINN framework for

dataflow optimization targeting the PYNQ-Z2 FPGA backend.

The deployed NNs on the PL achieve excellent hardware acceleration compared to other

devices with similar accuracy to the original primary network and very low energy consumption.

The topology of the early-exit branch network further improves the processing rate by 2.08×
compared to the primary network. The overall system is 1.52× more efficient compared to just

using the primary network with a minor accuracy drop of 1.64% using the validation dataset of

ILSVRC12.
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CONCLUSION

5.1 Thesis Summary and Achievement

To make an overall conclusion, this thesis demonstrated an image classification system executing

on an FPGA board with a significant hardware acceleration effect. Also, it verified the feasibility

that a sub-byte early-exit NN based on the ImageNet dataset can execute on a low-complexity

FPGA board. As a result, BNN, or sub-byte QNN on FPGA is a solution with great potential

for high-performance and low-power applications in both academic and industrial fields. The

development and completion of the FPGA framework based on HLS ease the development

difficulty in NN implementation on the FPGA PS and PL. At the same time, the neural network

after binarization and low-bit quantization bring the opportunity to accelerate the PL, which

results in a real-time, low-power architecture.

In the meantime, this thesis also demonstrates the novel concept of implementing the early-

exit strategy to the neural network executing on FPGAs. This brings a new pathway to the

flexibility of image classification system in the low-power application area and creates a good

balance between the inference efficiency and accuracy of neural networks.

Hardware implementation in Chapter 3 showed the partly binarized early-exit neural network

executing on PL with several mixtures of full-precision layers executing on the PS. The proposed

early-exit NN system in Chapter 3 achieves 50.27% Top-1 accuracy with an average inference

speed of 1032.22ms per image. The exit rate of this proposing early-exit network is 65.68%, which

is 1.2× more efficient than the original neural network (i.e. single primary network) and has a

negligible accuracy decrease of 1.56%.

Chapter 4 extended further based on the results harvested in Chapter 3. Chapter 4 focused on

optimizing the inference speed of the image classification system without sacrificing precision. As
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a result, the optimized early-exit NN achieves even better accuracy with 57.10% Top-1 accuracy

and an average inference speed of 250.36ms per image. Which is approximately 3× faster than

the proposed NN in Chapter 3.

Chapter 4 also implemented the NN system on a desktop Intel CPU and NVIDIA GPU to

compare the execution speed with the proposed PYNQ-Z2 FPGA board to validate the FPGA

acceleration effect. The result shows that the PYNQ-Z2 can execute the NN 2.44× faster than

the Intel CPU and achieves a similar execution time to the NVIDIA GPU.

5.2 Future Work

Throughout the thesis, there are several aspects that are valuable and can be extended for further

study as future works.

• The proposed PYNQ-Z2 FPGA board in this thesis is very resource-constrained and limits

the performance of NN for both inference accuracy and efficiency. Hence, for future work, other

FPGA devices with more resources such as the Zynq Ultrascale+ development platform can be

evaluated and allow a more complex system with multiple exits or better accuracy NN models.

• A method to automatically evaluate the optimal location of early exits and their total

number is also an interesting research path.

• Moreover, the implementation of NN to decent CPU and GPU can also be optimized to reach

better results. We also aim to extend our work to other application areas, such as object detection

and abnormal event monitoring.
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APPENDIX B. NN TRAINING DETAILS

NN TRAINING DETAILS

B.1 Weight Optimization Training
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FIGURE B.1. The training details of the neural network with different quantized
weights
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B.2 Activation Optimization Training
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FIGURE B.2. The training details of the neural network with different quantized
activations
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SoC System on Chip

CPU Central Processing Unit

GPU Graphics Processing Unit

NN Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

QNN Quantized Neural Network

BNN Binary Neural Networks

ANN Artificial Neural Network

HNN Hardware Neural Network

FPGA Field Programmable Gate Array

PL Programmable Logic

PS Processing System

HDL Hardware Description Language

57



APPENDIX C. LIST OF ABBREVIATIONS

ASIC Application-Specific Integrated Circuit

I/O Input/Output

RAM Random Access Memory

BRAM Block Random Access Memory

CLB Configurable Logic Block

SDF Synchronous Dataflow

CNP ConvNet Processor

RISC Reduced Instruction Set Computer

IADI Input-Adaptive Dynamic Inference

RADI Resources-Adaptive Dynamic Inference

AO Authentic Operation

HLS High-Level Synthesis

FC layers Fully Connected layers

ReLU Rectified Linear Unit

QAT Quantization-Aware Training

DPU Data Processing Unit

TDP Thermal Design Power
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