1,920 research outputs found

    Microbiota at Multiple Body Sites during Pregnancy in a Rural Tanzanian Population and Effects of Moringa-Supplemented Probiotic Yogurt

    Get PDF
    The nutritional status of pregnant women is vital for healthy outcomes and is a concern for a large proportion of the world\u27s population. The role of the microbiota in pregnancy and nutrition is a promising new area of study with potential health ramifications. In many African countries, maternal and infant death and morbidity are associated with malnutrition. Here, we assess the influence of probiotic yogurt containing Lactobacillus rhamnosus GR-1, supplemented with Moringa plant as a source of micronutrients, on the health and oral, gut, vaginal, and milk microbiotas of 56 pregnant women in Tanzania. In an open-label study design, 26 subjects received yogurt daily, and 30 were untreated during the last two trimesters and for 1 month after birth. Samples were analyzed using 16S rRNA gene sequencing, and dietary recalls were recorded. Women initially categorized as nourished or undernourished consumed similar calories and macronutrients, which may explain why there was no difference in the microbiota at any body site. Consumption of yogurt increased the relative abundance of Bifidobacterium and decreased Enterobacteriaceae in the newborn feces but had no effect on the mother\u27s microbiota at any body site. The microbiota of the oral cavity and GI tract remained stable over pregnancy, but the vaginal microbiota showed a significant increase in diversity leading up to and after birth. In summary, daily micronutrient-supplemented probiotic yogurt provides a safe, affordable food for pregnant women in rural Tanzania, and the resultant improvement in the gut microbial profile of infants is worthy of further study

    Vaginal Microbiome and Epithelial Gene Array in Post-Menopausal Women with Moderate to Severe Dryness

    Get PDF
    After menopause, many women experience vaginal dryness and atrophy of tissue, often attributed to the loss of estrogen. An understudied aspect of vaginal health in women who experience dryness due to atrophy is the role of the resident microbes. It is known that the microbiota has an important role in healthy vaginal homeostasis, including maintaining the pH balance and excluding pathogens. The objectives of this study were twofold: first to identify the microbiome of post-menopausal women with and without vaginal dryness and symptoms of atrophy; and secondly to examine any differences in epithelial gene expression associated with atrophy. The vaginal microbiome of 32 post-menopausal women was profiled using Illumina sequencing of the V6 region of the 16S rRNA gene. Sixteen subjects were selected for follow-up sampling every two weeks for 10 weeks. In addition, 10 epithelial RNA samples (6 healthy and 4 experiencing vaginal dryness) were acquired for gene expression analysis by Affymetrix Human Gene array. The microbiota abundance profiles were relatively stable over 10 weeks compared to previously published data on premenopausal women. There was an inverse correlation between Lactobacillus ratio and dryness and an increased bacterial diversity in women experiencing moderate to severe vaginal dryness. In healthy participants, Lactobacillus iners and L. crispatus were generally the most abundant, countering the long-held view that lactobacilli are absent or depleted in menopause. Vaginal dryness and atrophy were associated with down-regulation of human genes involved in maintenance of epithelial structure and barrier function, while those associated with inflammation were up-regulated consistent with the adverse clinical presentation

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    A member of the Whirly family is a multifunctional RNA- and DNA-binding protein that is essential for chloroplast biogenesis

    Get PDF
    ‘Whirly’ proteins comprise a plant-specific protein family whose members have been described as DNA-binding proteins that influence nuclear transcription and telomere maintenance, and that associate with nucleoids in chloroplasts and mitochondria. We identified the maize WHY1 ortholog among proteins that coimmunoprecipitate with CRS1, which promotes the splicing of the chloroplast atpF group II intron. ZmWHY1 localizes to the chloroplast stroma and to the thylakoid membrane, to which it is tethered by DNA. Genome-wide coimmunoprecipitation assays showed that ZmWHY1 in chloroplast extract is associated with DNA from throughout the plastid genome and with a subset of plastid RNAs that includes atpF transcripts. Furthermore, ZmWHY1 binds both RNA and DNA in vitro. A severe ZmWhy1 mutant allele conditions albino seedlings lacking plastid ribosomes; these exhibit the altered plastid RNA profile characteristic of ribosome-less plastids. Hypomorphic ZmWhy1 mutants exhibit reduced atpF intron splicing and a reduced content of plastid ribosomes; aberrant 23S rRNA metabolism in these mutants suggests that a defect in the biogenesis of the large ribosomal subunit underlies the ribosome deficiency. However, these mutants contain near normal levels of chloroplast DNA and RNAs, suggesting that ZmWHY1 is not directly required for either DNA replication or for global plastid transcription

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity.</p> <p>Results</p> <p>We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants.</p> <p>Conclusion</p> <p>Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.</p
    corecore