39 research outputs found

    Fifty Years of IOCV, 1957 to 2007: From Graft-Transmitted Citrus Agents to Viroids, Viruses and Endogenous Bacteria

    Get PDF
    In November, 1957, the well-known Citrus Experiment Station (CES) of the University of California at Riverside, USA, celebrated its 50th anniversary. This was a good opportunity to hold the first international conference on so-called “virus” diseases of citrus, of which many had been studied in California, if not in Florida. Maladies such as Tristeza, Psorosis, Concave Gum and Blind Pocket, Crinkly leaf and Infectious variegation, Stubborn, Xyloporosis and Cachexia, Exocortis, and Vein enation had been shown to be transmissible by graft-inoculation. and were, for this reason, thought to be of viral nature, but not a single causal agent had yet been identified, mechanically transmitted, purified, or even seen in the electron microscop

    ICTV Virus Taxonomy Profile: Ophioviridae

    Get PDF
    [EN] The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3-12.5 kb divided into 3-4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ophioviridae, which is available at http://www.ictv.global/report/ophioviridae.Production of this summary, the online chapter and associated resources was funded by a grant from the Wellcome Trust (WT108418AIA).Garcia, M.; Dal Bo, E.; Da Graca, JV.; Gago Zachert, SP.; Hammond, J.; Moreno, P.; Natsuaki, T.... (2017). ICTV Virus Taxonomy Profile: Ophioviridae. Journal of General Virology. 98(6):1161-1162. doi:10.1099/jgv.0.000836S1161116298

    Conservation of Gene Order and Content in the Circular Chromosomes of ‘Candidatus Liberibacter asiaticus’ and Other Rhizobiales

    Get PDF
    ‘Ca. Liberibacter asiaticus,’ an insect-vectored, obligate intracellular bacterium associated with citrus-greening disease, also called “HLB," is a member of the Rhizobiales along with nitrogen-fixing microsymbionts Sinorhizobium meliloti and Bradyrhizobium japonicum, plant pathogen Agrobacterium tumefaciens and facultative intracellular mammalian pathogen Bartonella henselae. Comparative analyses of their circular chromosomes identified 514 orthologous genes shared among all five species. Shared among all five species are 50 identical blocks of microsyntenous orthologous genes (MOGs), containing a total of 283 genes. While retaining highly conserved genomic blocks of microsynteny, divergent evolution, horizontal gene transfer and niche specialization have disrupted macrosynteny among the five circular chromosomes compared. Highly conserved microsyntenous gene clusters help define the Rhizobiales, an order previously defined by 16S RNA gene similarity and herein represented by the three families: Bartonellaceae, Bradyrhizobiaceae and Rhizobiaceae. Genes without orthologs in the other four species help define individual species. The circular chromosomes of each of the five Rhizobiales species examined had genes lacking orthologs in the other four species. For example, 63 proteins are encoded by genes of ‘Ca. Liberibacter asiaticus’ not shared with other members of the Rhizobiales. Of these 63 proteins, 17 have predicted functions related to DNA replication or RNA transcription, and some of these may have roles related to low genomic GC content. An additional 17 proteins have predicted functions relevant to cellular processes, particularly modifications of the cell surface. Seventeen unshared proteins have specific metabolic functions including a pathway to synthesize cholesterol encoded by a seven-gene operon. The remaining 12 proteins encoded by ‘Ca. Liberibacter asiaticus’ genes not shared with other Rhizobiales are of bacteriophage origin. ‘Ca. Liberibacter asiaticus’ shares 11 genes with only Sinorhizobium meliloti and 12 genes are shared with only Bartonella henselae

    Comparison of the ‘Ca. Liberibacter asiaticus’ Genome Adapted for an Intracellular Lifestyle with Other Members of the Rhizobiales

    Get PDF
    An intracellular plant pathogen ‘Candidatus Liberibacter asiaticus,’ a member of the Rhizobiales, is related to Sinorhizobium meliloti, Bradyrhizobium japonicum, nitrogen fixing endosymbionts, Agrobacterium tumefaciens, a plant pathogen, and Bartonella henselae, an intracellular mammalian pathogen. Whole chromosome comparisons identified at least 50 clusters of conserved orthologous genes found on the chromosomes of all five metabolically diverse species. The intracellular pathogens ‘Ca. Liberibacter asiaticus’ and Bartonella henselae have genomes drastically reduced in gene content and size as well as a relatively low content of guanine and cytosine. Codon and amino acid preferences that emphasize low guanosine and cytosine usage are globally employed in these genomes, including within regions of microsynteny and within signature sequences of orthologous proteins. The length of orthologous proteins is generally conserved, but not their isoelectric points, consistent with extensive amino acid substitutions to accommodate selection for low GC content. The ‘Ca. Liberibacter asiaticus’ genome apparently has all of the genes required for DNA replication present in Sinorhizobium meliloti except it has only two, rather than three RNaseH genes. The gene set required for DNA repair has only one rather than ten DNA ligases found in Sinorhizobium meliloti, and the DNA PolI of ‘Ca. Liberibacter asiaticus’ lacks domains needed for excision repair. Thus the ability of ‘Ca. Liberibacter asiaticus’ to repair mutations in its genome may be impaired. Both ‘Ca. Liberibacter asiaticus and Bartonella henselae lack enzymes needed for the metabolism of purines and pyrimidines, which must therefore be obtained from the host. The ‘Ca. Liberibacter asiaticus’ genome also has a greatly reduced set of sigma factors used to control transcription, and lacks sigma factors 24, 28 and 38. The ‘Ca. Liberibacter asiaticus’ genome has all of the hallmarks of a reduced genome of a pathogen adapted to an intracellular lifestyle

    Integrative phylogenetic, phylogeographic and morphological characterisation of the Unio crassus species complex reveals cryptic diversity with important conservation implications

    Get PDF
    The global decline of freshwater mussels and their crucial ecological services highlight the need to understand their phylogeny, phylogeography and patterns of genetic diversity to guide conservation efforts. Such knowledge is urgently needed for Unio crassus, a highly imperilled species originally widespread throughout Europe and southwest Asia. Recent studies have resurrected several species from synonymy based on mitochondrial data, revealing U. crassus to be a complex of cryptic species. To address long-standing taxonomic uncertainties hindering effective conservation, we integrate morphometric, phylogenetic, and phylogeographic analyses to examine species diversity within the U. crassus complex across its entire range. Phylogenetic analyses were performed using cytochrome c oxidase subunit I (815 specimens from 182 populations) and, for selected specimens, whole mitogenome sequences and Anchored Hybrid Enrichment (AHE) data on ∼ 600 nuclear loci. Mito-nuclear discordance was detected, consistent with mitochondrial DNA gene flow between some species during the Pliocene and Pleistocene. Fossil-calibrated phylogenies based on AHE data support a Mediterranean origin for the U. crassus complex in the Early Miocene. The results of our integrative approach support 12 species in the group: the previously recognised Unio bruguierianus, Unio carneus, Unio crassus, Unio damascensis, Unio ionicus, Unio sesirmensis, and Unio tumidiformis, and the reinstatement of five nominal taxa: Unio desectus stat. rev., Unio gontierii stat. rev., Unio mardinensis stat. rev., Unio nanus stat. rev., and Unio vicarius stat. rev. Morphometric analyses of shell contours reveal important morphospace overlaps among these species, highlighting cryptic, but geographically structured, diversity. The distribution, taxonomy, phylogeography, and conservation of each species are succinctly described.We thank Ana-Maria Benedek, Monica Sîrbu and Jouni Leinikki for their assistance with the fieldwork, and to Jeroen Goud, Sankurie Pye, Fiona Ware, Emily Mitchell, and Aleksandra Skawina for their assistance with the taxonomic investigation. We would also like to thank the editor, Dr. Guillermo Ortí, and two anonymous reviewers for their time and effort in reviewing our manuscript and for their insightful comments and valuable improvements to our work. This publication is based upon work from COST Action CA18239: CONFREMU - Conservation of freshwater mussels: a pan-European approach, supported by COST (European Cooperation in Science and Technology), including STSMs, the interaction of the authors and the writing of the paper. This work was supported by the project ConBiomics: The Missing Approach for the Conservation of Freshwater Bivalves Project No. POCI-01-0145-FEDER-030286, co-financed by FEDER through POCI and by FCT - Fundaç˜ao para a Ciˆencia e a Tecnologia, through national funds. Strategic funding UIDB/04423/2020 and UIDP/04423/2020 was provided by FCT. FCT also supported DVG (2020.03848.CEECIND), EF (CEECINST/00027/ 2021/CP2789/CT0003) and MLL (2020.03608.CEECIND). INB, AVK and IVV were supported by the Russian Science Foundation under grants (19-14-00066-P), (21-17-00126) and (21-74-10130) respectively. BVB acknowledges the bioinformatics platform of UMR 8198 for the computing resources to perform time-calibrated phylogenetic analyses; this platform is in part funded by CPER research project CLIMIBIO through the French Minist`ere de l’Enseignement Sup´erieur et de la Recherche, the Agence Nationale de la Recherche, the European Fund for Regional Development (FEDER) and the region Hauts-de-France (HdF). Support to KD came from the Czech Science Foundation (19–05510S). TT and MT were supported by the National Science Fund of Bulgaria under the project ‘Conservation of freshwater mussels on the Balkan Peninsula’ (KP-06-COST-9/20.07.2022). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the United States Government.info:eu-repo/semantics/publishedVersio

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Worldwide trends in underweight and obesity from 1990 to 2022 : a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    A list of authors and their affiliations appears online. A supplementary appendix is herewith attached.Background: Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods: We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI 2 SD above the median). Findings: From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness. Interpretation: The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesity.peer-reviewe
    corecore