771 research outputs found

    Flexible, highly efficient all-polymer solar cells

    Get PDF
    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C-61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.11262212Ysciescopu

    Frequencies of polymorphisms associated with BSE resistance differ significantly between Bos taurus, Bos indicus, and composite cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases that affect several mammalian species. At least three factors related to the host prion protein are known to modulate susceptibility or resistance to a TSE: amino acid sequence, atypical number of octapeptide repeats, and expression level. These factors have been extensively studied in breeds of <it>Bos taurus </it>cattle in relation to classical bovine spongiform encephalopathy (BSE). However, little is currently known about these factors in <it>Bos indicus </it>purebred or <it>B. indicus </it>× <it>B. taurus </it>composite cattle. The goal of our study was to establish the frequency of markers associated with enhanced susceptibility or resistance to classical BSE in <it>B. indicus </it>purebred and composite cattle.</p> <p>Results</p> <p>No novel or TSE-associated <it>PRNP</it>-encoded amino acid polymorphisms were observed for <it>B. indicus </it>purebred and composite cattle, and all had the typical number of octapeptide repeats. However, differences were observed in the frequencies of the 23-bp and 12-bp insertion/deletion (indel) polymorphisms associated with two bovine <it>PRNP </it>transcription regulatory sites. Compared to <it>B. taurus</it>, <it>B. indicus </it>purebred and composite cattle had a significantly lower frequency of 23-bp insertion alleles and homozygous genotypes. Conversely, <it>B. indicus </it>purebred cattle had a significantly higher frequency of 12-bp insertion alleles and homozygous genotypes in relation to both <it>B. taurus </it>and composite cattle. The origin of these disparities can be attributed to a significantly different haplotype structure within each species.</p> <p>Conclusion</p> <p>The frequencies of the 23-bp and 12-bp indels were significantly different between <it>B. indicus </it>and <it>B. taurus </it>cattle. No other known or potential risk factors were detected for the <it>B. indicus </it>purebred and composite cattle. To date, no consensus exists regarding which bovine <it>PRNP </it>indel region is more influential with respect to classical BSE. Should one particular indel region and associated genotypes prove more influential with respect to the incidence of classical BSE, differences regarding overall susceptibility and resistance for <it>B. indicus </it>and <it>B. taurus </it>cattle may be elucidated.</p

    Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters

    Get PDF
    A rapidly growing interest in wearable electronics has led to the development of stretchable and transparent heating films that can replace the conventional brittle and opaque heaters. Herein, we describe the rapid production of large-area, stretchable and transparent electrodes using electrospun ultra-long metal nanofibers (mNFs) and demonstrate their potential use as wirelessly operated wearable heaters. These mNF networks provide excellent optoelectronic properties (sheet resistance of similar to 1.3 O per sq with an optical transmittance of similar to 90%) and mechanical reliability (90% stretchability). The optoelectronic properties can be controlled by adjusting the area fraction of the mNF networks, which also enables the modulation of the power consumption of the heater. For example, the low sheet resistance of the heater presents an outstanding power efficiency of 0.65 W cm(-2) (with the temperature reaching 250 degrees C at a low DC voltage of 4.5 V), which is similar to 10 times better than the properties of conventional indium tin oxide-based heaters. Furthermore, we demonstrate the wireless fine control of the temperature of the heating film using Bluetooth smart devices, which suggests substantial promise for the application of this heating film in next-generation wearable electronics

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Bacterial Transmembrane Proteins that Lack N-Terminal Signal Sequences

    Get PDF
    Tail-anchored membrane proteins (TAMPs), a class of proteins characterized by their lack of N-terminal signal sequence and Sec-independent membrane targeting, play critical roles in apoptosis, vesicle trafficking and other vital processes in eukaryotic organisms. Until recently, this class of membrane proteins has been unknown in bacteria. Here we present the results of bioinformatic analysis revealing proteins that are superficially similar to eukaryotic TAMPs in the bacterium Streptomyces coelicolor. We demonstrate that at least four of these proteins are bona fide membrane-spanning proteins capable of targeting to the membrane in the absence of their N-terminus and the C-terminal membrane-spanning domain is sufficient for membrane targeting. Several of these proteins, including a serine/threonine kinase and the SecE component of the Sec translocon, are widely conserved in bacteria

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
    • …
    corecore