74 research outputs found

    Implementation of a material model for a cast trip-steel

    Get PDF
    The implementation of a phenomenological, macroscopic model for TRIPsteels in the finite element code ABAQUS is presented. The model takes into account both the strain-rate dependent flow behaviour of the two phases, austenite (γ) and martensite (α ), and the temperature and stress state dependent γ → α phase transformation. In order to solve the system of nonlinear equations, which results from the implicit integration of the constitutive model, the application of an affine trust-region approach is proposed to compute strictly feasible solutions. Furthermore, model predictions are compared with experimental results obtained from tensile tests on notched specimens

    Cruciform specimens used for determination of the influence of T-stress on fatigue crack growth with overloads on aluminum alloy Al 6061 T651

    Get PDF
    The publication presents a cruciform specimen for the determination of cyclic crack growth data under biaxial loading. The design of the specimen with slotted loading arms allows good decoupling between the two loading directions. For different initial crack geometries, the solutions for the stress intensity factors KI and KII as well as the crack-parallel T-stress are calculated by linear elastic finite element analysis (FEA) with the program ABAQUS. For two specimens with the same geometry made of aluminum alloy 6061 T651, the crack growth behaviour is measured at different T-stresses at a stress ratio of R=0.7 and overloads. It is shown that the crack retardation after an overload with crack-parallel tensile stress is less than without it. The reason for this behaviour is considered to be the reduced plasticity at the crack tip due to the higher triaxiality of the stress state

    Cruciform specimens used for determination of the influence of T-stress on fatigue crack growth with overloads on aluminum alloy Al 6061 T651

    Get PDF
    The publication presents a cruciform specimen for the determination of cyclic crack growth data under biaxial loading. The design of the specimen with slotted loading arms allows good decoupling between the two loading directions. For different initial crack geometries, the solutions for the stress intensity factors KI and KII as well as the crack-parallel T-stress are calculated by linear elastic finite element analysis (FEA) with the program ABAQUS. For two specimens with the same geometry made of aluminium alloy 6061 T651, the crack growth behaviour is measured at different T-stresses at a stress ratio of R=0.7 and overloads. It is shown that the crack retardation after an overload with crack-parallel tensile stress is less than without it. The reason for this behaviour is considered to be the reduced plasticity at the crack tip due to the higher triaxiality of the stress state

    Effects of Plasma-Chemical Composition on AISI 316L Surface Modification by Active Screen Nitrocarburizing Using Gaseous and Solid Carbon Precursors

    Get PDF
    Low-temperature plasma nitrocarburizing treatments are applied to improve the surface properties of austenitic stainless steels by forming an expanded austenite layer without impairing the excellent corrosion resistance of the steel. Here, low-temperature active screen plasma nitrocarburizing (ASPNC) was investigated in an industrial-scale cold-wall reactor to compare the effects of two active screen materials: (i) a steel active screen with the addition of methane as a gaseous carbon-containing precursor and (ii) an active screen made of carbon-fibre-reinforced carbon (CFC) as a solid carbon precursor. By using both active screen materials, ASPNC treatments at variable plasma conditions were conducted using AISI 316L. Moreover, insight into the plasma-chemical composition of the H2-N2 plasma for both active screen materials was gained by laser absorption spectroscopy (LAS) combined with optical emission spectroscopy (OES). It was found that, in the case of a CFC active screen in a biased condition, the thickness of the nitrogen-expanded austenite layer increased, while the thickness of the carbon-expanded austenite layer decreased compared to the non-biased condition, in which the nitrogen- and carbon-expanded austenite layers had comparable thicknesses. Furthermore, the crucial role of biasing the workload to produce a thick and homogeneous expanded austenite layer by using a steel active screen was validated

    In situ characterization of the functional degradation of a [001] orientated Fe–Mn–Al–Ni single crystal under compression using acoustic emission measurements

    Get PDF
    Acoustic emission (AE) measurements were conducted in situ during cyclic compressive loading on an [ 00 1 over line ] orientated single crystal of Fe-Mn-Al-Ni shape memory alloy to study functional degradation of its superelastic response. The acoustic investigations were corroborated by optical microscopy, employing video imaging, and transmission electron microscopy. The analysis of acoustic emissions recorded during repeated loading and unloading sessions revealed two categories of AE signals that are differed by their characteristics in time and frequency domains. These two distinct types of AE signals were related to two underlying mechanisms: (i) the nucleation and reverse transformation of stress-induced (twinned) martensite, and (ii) the lateral growth and shrinkage of one dominant martensite variant and related dislocation activities, respectively. In addition, an asymmetry in the AE activity during forward and reverse transformation during mechanical loading and unloading was detected. In particular, an unexpected high AE activity was observed during the superelastic unloading of martensitic microstructure from the point of maximum load/strain. This effect was attributed to the reverse transformation of small, tiny areas of martensite as well as to unpinning and annihilation effects related to dislocations. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    High‐temperature ternary oxide phases in Ta/Nb‐Alumina composite materials

    Get PDF
    Coarse-grained composites of refractory ceramics and refractory metals are a novel approach for materials at application temperatures up to 1500 °C. Al2_{2}O3_{3} and the refractory metals Nb and Ta are suitable candidates for enhanced thermal shock capability, as they show similar thermal expansion. During fabrication, a key aspect to consider is the possible formation of additional phases upon interaction of the constituent phases as well as through reaction with the environment. X-Ray diffraction (XRD) and investigations of the microstructure with scanning electron microscopy methods unveil Al2_{2}O3_{3}–Nb composite to form NbO, whereas for Al2_{2}O3_{3}–Ta the ternary compound aluminum tantalate (AlTaO4_{4}) is found. Thermodynamic calculations show that the changing oxygen solubility in Nb accounts for the formation of NbO, and explain the absence of a corresponding niobate (AlNbO4) phase. AlTaO4_{4} is identified as the disordered tetragonal high-temperature modification

    Coarse‐Grained Refractory Composite Castables Based on Alumina and Niobium

    Get PDF
    Niobium-alumina composite aggregates with 60 vol% metal content and with particle sizes up to 3150 μm are produced using castable technology followed by sintering, and a crushing and sieving process. X-Ray diffraction (XRD) analysis reveals phase separation during crushing as the niobium:corundum volume ratios is between 37:57 and 64:31 among the 4 produced aggregate classes 0–45, 45–500, 500–1000, and 1000–3150 μm. The synthesized aggregates are used to produce coarse-grained refractory composites in a second casting and sintering step. The fine- and coarse-grained material shows porosities between 32% and 36% with a determined cold modulus of rupture of 20 and 12 MPa, and E-moduli of 37 and 46 GPa, respectively. The synthesized fine-grained composites reached true strain values between 0.08 at 1100 °C and 0.18 at 1500 °C and the coarse-grained ones values between 0.02 and 0.09. The electrical conductivity for the fine-grained and the coarse-grained material is 448±66 and 111±25  S cm1^{−1}, respectively

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore