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a b s t r a c t 

Despite rapid development of laser powder bed fusion (L-PBF) and its monitoring techniques, there is still a lack 

of in situ crack detection methods, among which acoustic emission (AE) is one of the most sensitive. To elaborate 

on this topic, in situ AE monitoring was applied to L-PBF manufacturing of a high-strength Al 92 Mn 6 Ce 2 (at. %) 

alloy and combined with subsequent X-ray computed tomography. By using a structure borne high-frequency 

sensor, even a simple threshold-based monitoring was able to detect AE activity associated with cracking, which 

occurred not only during L-PBF itself, but also after the build job was completed, i.e. in the cooling phase. AE 

data analysis revealed that crack-related signals can easily be separated from the background noise (e.g. inert 

gas circulation pump) through their specific shape of a waveform, as well as their energy, skewness and kurtosis. 

Thus, AE was verified to be a promising method for L-PBF monitoring, enabling to detect formation of cracks 

regardless of their spatial and temporal occurrence. 
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. Introduction 

Among various methods of metal additive manufacturing (AM), laser

owder bed fusion (L-PBF) is one of the dominating techniques industri-

lly used techniques [ 1 , 2 ]. The main L-PBF defect types – balling, poros-

ty, lack of fusion and fusion holes, cracks – are typically the result of

on-optimal building parameters [3] , which have to be set individually

or each machine type and alloy. Unlike ex situ analyses of a manufac-

ured part, in situ monitoring of AM enables immediate adjustment of

rocessing parameters, which is very efficient in terms of time and mate-

ial savings. Therefore, the development of in situ monitoring techniques

or metal-based AM is nowadays in the focus of interest [4] . Most moni-

oring methods are camera-based and provide information mainly from

he melt pool [5] . This allows to detect defects which form in the upper

ayer, such as balling, lack of fusion or gas pores. However, cracking

an take place not only in the upper layer [6] , but at any position of the

anufactured part due to residual stresses and temperature gradients

7] . Thus, in order to detect any crack, a method is required that is not

imited to the upper layer, such as the method of acoustic emission (AE).

AE is an elastic wave emitted by a localized change in stress, e.g.,

ue to a crack, a twin or a shear band formation [8] . The AE method

s therefore ideal for detecting cracks and is used in materials science
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nd industrial monitoring, including AM [9] . AM monitoring has been

ignificantly improved in recent years through the use of machine learn-

ng (ML) [10] , including AE-based methods [11] . Most commonly, re-

earchers use airborne AE sensors (microphones) for defect detection at

 frequency range of 0 – 100 kHz [11–14] . With such an AE setup, pro-

esses in the melt pool [14] (including pore formation [15] ) can be de-

ected. However, fast events in a solidified metal (e.g. cracks) naturally

roduce AE with higher frequencies [16] . The use of high-frequency

tructure-borne AE sensors thus makes it possible to detect cracks in

itu during L-PBF [17] . However, the related works focus on finding re-

ationships between AE data streams and key processing conditions (e.g.

ow power, optimum power, high power) rather than the defects them-

elves [18] . The aim of the present work is therefore a direct correlation

etween the observed cracks formed during L-PBF and the registered AE

ignals. For this purpose, in situ AE monitoring of the L-PBF process was

ross-linked with the information from the machine protocol and the ex

itu X-ray micro-computed tomography (μCT) of the manufactured sam-

les and then jointly analyzed. 

. Experimental methods 

A metastable Al 92 Mn 6 Ce 2 (at. %) alloy suitable for L-PBF was se-

ected as an experimental material due to the well-studied relation be-
ber 2022 
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Fig. 1. (a) Geometric dimensions of the three samples (BJ1, BJ2, and BJ3) in- 

tended for additive manufacturing by L-PBF using three build parameter presets 

(sizes are given in mm). (b) Schematic diagram of the acoustic emission setup. 
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ween manufacturing parameters, defects, microstructure, and material

roperties [19] . The alloy was gas-atomized (EIGA: Electrode Induction

elting Inert Gas Atomization, Eckart TLS GmbH) to a powder with a

edian diameter d 50 = 35 μm and processed in a SLM280 2.0 Dual Laser

achine (SLM Solutions Group AG). Cylindrical samples with a diame-

er of 5 mm were manufactured under argon atmosphere with a constant

aser power of 250 W, a hatch distance of 0.1 mm and a layer thickness

f 50 μm (stripe scanning pattern, 79° vector rotation). By varying the

aser scanning speed between 500, 850, and 1150 mm/s, three manufac-

uring conditions were established based on previous findings: overmelt-

ng, optimum, and cracking, respectively. In total, three samples were

uilt in three different build jobs ( Fig. 1 a ). Build job 1 (BJ1), which

efers to the reference state, consisted of a cylinder of 10 mm height

anufactured with optimal parameters and preheating of the baseplate

o 200°C. Build job 2 (BJ2) consisted of a combination of all three pa-

ameter presets and the same preheating step. Finally, build job 3 (BJ3)

as similar to BJ1, but was carried without preheating of the baseplate.

ll samples were built on an Al baseplate (98 × 98 × 10 mm 

3 ), which

as mounted on the in-house customized building frame. 

The AE waveforms were acquired using the PCI-2-based AE system

rom Physical Acoustics Corp. (USA) according to the scheme shown in

ig. 1 b . The broadband high temperature AE sensor D9215 was attached

o the baseplate directly below the manufactured sample using the high

emperature grease Molykote ® 41 as a coupling medium. The AE signal

as amplified by 40 dB with the low-noise preamplifier, passed through

he 50–600 kHz band-pass filter and recorded by the 18-bit PCI-2 board

ith a sampling frequency of 2 MHz. AE signals with an amplitude above

he specified threshold level (90-100 dB) were recorded with a fixed 4k

ength and displayed on site using the “AE Viewer ” software integrated

n the AE system. The threshold level was set individually before each

M session so that it was just above the amplitude of the background

oise. AE monitoring was carried out throughout the AM process and

wo hours after the completion of the AM job to detect possible cracking

ctivity during cooling of the sample. 
2 
Signal processing and analysis were performed using the Python pro-

ramming language. The power spectral density of the waveform of an

E event was calculated with the fast Fourier transform according to

elch method [20] and then normalized. In addition, statistical features

uch as root mean square (RMS), skewness 𝛾x and kurtosis k x (3 
rd and

 

th standardized distribution moments, respectively) were calculated as

ollowing: 

𝑀𝑆 = 

√ ∑𝑛 

𝑖 =1 
(
𝑥 𝑖 − 𝜇𝑥 

)
𝑛 − 1 

, (1)

𝑥 = 𝐸 

( 

𝑥 − 𝜇𝑥 

𝜎𝑥 

) 3 
, (2)

 𝑥 = 𝐸 

( 

𝑥 − 𝜇𝑥 

𝜎𝑥 

) 4 
, (3)

here E is a mathematical expectation, x is an AE amplitude of a wave-

orm time series, 𝜇x is the mean and 𝜎x is the standard deviation of

 . 

Non-destructive and three-dimensional imaging via μ-CT was used

o characterize the manufactured samples using previously obtained ex-

erience of the authors with Al alloys [21] . All scans were performed

ith a Zeiss Xradia Versa 510 (Carl Zeiss, Germany) μ-CT at a power

f 10 W and a voltage of 160 kV and the highest possible resolution of

.85 μm (voxel size). Due to the aspect ratio of the samples being in the

ange of 3 to 4, data stitching of either three or four separate field of

iew scans was performed. For each scan, 1601 projections were taken

ver the range of 360° with an exposure time of 5 s. 

The acquired μ-CT data were reconstructed with the filtered back-

rojection algorithm within the “Scout-and-Scan ” software by Zeiss. Im-

ge processing after reconstruction was performed using the freeware

Fiji ImageJ ” and the software “Dragonfly ” from Object Research Sys-

ems (Canada). The segmentation of the volume between matrix and

efect (crack or pore) was achieved by thresholding the intensity of the

oxels. Further, only the continuous crack space was extracted and used

or the visualization of the cracks. 

. Results and discussion 

.1. X-ray computed tomography 

After processing of the raw μ-CT data, radial sections (slices) with a

tep size of 1 °were obtained and analyzed. Careful inspection of each

lice revealed cracks with crack opening of at least 2.85 μm (voxel res-

lution). Selected slices of the individual sample scans are shown in

ig. 2 b, c, e . In addition, crack voxels were extracted from the scanned

olume (see Section 2 for details) and shown separately in Fig. 2 a, d,

 . Further μ-CT crack projections from different angles can be found in

he supplementary . 

As expected, the reference sample BJ1 has the best integrity. How-

ver, despite the optimal L-PBF processing parameters, there is one crack

t a height of 4 mm ( Fig. 2 a, b ). There are possibly further cracks lo-

ated in the area near the baseplate, but this part of the sample was

nfortunately lost during cut-off. 

Sample BJ2 clearly shows three areas related to three build parame-

ers. The lower part looks similar as that of a BJ1 with a side crack. The

rack extraction showed that it actually consists of three cracks: two

maller cracks slightly above and one below the main one ( Fig. 2 c, d ).

nother faint crack can be seen arising from the cut-off area. The middle

f BJ2 contains significant residual porosity, which is due to the inten-

ive evaporation in the melt pool caused by the selected manufacturing

resetting “overmelting ”. However, no cracking was found to emerge

rom this area. The upper part of BJ2, which was manufactured using

ower energy, contains two big cracks. One of them is located in the

iddle of “cracking ” area. Another was initiated right at the border of

he “overmelting ” area and went through it, deviating from a flat path.
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Fig. 2. Selected μ-CT cross sections of the three Al 92 Mn 6 Ce 2 samples, manufactured by L-PBF according to the plan shown in Fig. 1 a : Raw data (b, c, e) and filtered 

cracks (a, d, f). Crossed rectangles at the bottom of each sample correspond to the cut-off part. Arrows point on detected cracks. 
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Fig. 3. AE waveform recorded during operation and shutdown of the inert gas 

circulation pump in the L-PBF machine. 
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t seems that this deviation was caused by an attraction of the crack tip

n residual pores directly connected to the crack. 

As expected, the lack of preheating during BJ3 resulted in severe

racking and loss of a sample fragment near the baseplate ( Fig. 2 e, f ).

urprisingly, the upper part of BJ3 was also affected by the absence of

reheating. Large size and entanglement of cracks hinder determination

f their exact number in both lower and upper parts of BJ3. Neverthe-

ess, high AE activity is to be expected in these two parts. 

.2. Acoustic emission 

During the set-up of the AE system, sample signals were recorded

rior to the L-PBF process under different conditions (power on/off,

owder rake movement, pump on/off, etc.). No significant influence of

he activity of the machine modules on the AE was found, except for

he work of the inert gas circulation pump. The noise amplitude of the

E was 10 times higher (2 against 0.2 V) when the pump was turned on

 Fig. 3 ). Since L-PBF requires a constant flow of inert gas and circulation

uring processing, the vibrations of the built-in pump were unavoidable.

Due to its stable amplitude level, most of the pump-related back-

round noise was cut off from the recorded AE signals by a constant

hreshold value. However, some of the noise bursts exceeded the thresh-

ld, which was set to be as low as possible. In general, all AE signals

ecorded during the three experiments belonged to one of four types

 Fig. 4 ). The AE signals of the background noise contained either a

roup of continuous bursts ( Fig. 4 a ) or a single burst ( Fig. 4 c ), but

ad a similar power spectrum ( Fig. 4 b, d ). Several noise bursts were of

 different nature (probably a hardware switcher) and contained higher

requencies in the spectrum ( Fig. 4 e, f ). However, all three types of noise

ignals occurred not only during L-PBF processing, but also separately

rom it during AE setup. This means that they are independent of the

M process. 
3 
The AE signals of the fourth type were assumed to originate from

eveloping cracks due to their specific characteristics: triangular wave-

orm with immediate peak rise and gradual decay during 1 to 3 ms

 Fig. 4 g ). Most of the crack-related AE signals had a peak power at

 frequency of 100 kHz and a significant part of the spectrum in the

igh frequency range up to 500 kHz ( Fig. 4 h ). In addition to the spe-

ific waveform, an AE signal of a crack had a specific sound that can be

onverted to a human-accessible range by reducing the playback speed.

 larger set of collected AE signals is provided in the supplementary

long with reproducible audio files for each signal. 

One can notice a similarity between the normalised PSD distributions

f a crack and an AE signal with noise burst ( Fig. 4 f, h ). This is the main

eason for inapplicability of PSD-based k-means clustering according to

. Pomponi and A. Vinogradov [22] . Nevertheless, registered crack sig-

als can be easily separated from the noise by their specific waveform
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Fig. 4. Examples of four types of recorded 

acoustic emission signals, taken from the BJ2: 

background noise (a, b), background noise 

burst (c, d), noise burst (e, f), and crack (g, h, 

red color). Normalized power spectral density 

(b, d, f, h) was calculated for each waveform 

(a, c, e, g) of an event. Audio examples of each 

event type can be found in the supplementary . 

Fig. 5. μ-CT (a) and AE (b) data synchronized with each other along the time scale during the BJ1. Arrows indicate correlation between registered AE crack events 

(red triangles) and crack locations of the sample. 
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o  
ithout additional calculations. Such a manual separation serves as the

eference with the aim to develop an automated classification routine

n a future work. 

.3. Joint analysis of L-PBF, μ-CT and AE data 

After detecting cracks in a μ-CT scan and crack signals in AE data,

oth were synchronized using the time scale from the log file of the

M machine. The results of the first build job are represented in Fig. 5 .
4 
nly three crack signals were detected. Two crack signals on 5 th and

 

th minute of manufacturing seem to correspond to cracks near the base-

late in the cut-off part. The revealed crack #1 at a height of 4 mm seems

o correspond to the AE signal recorded in the 18 th minute. The delay

etween the manufacturing of a cracked layer and the corresponding AE

ignal is 8 minutes, indicating that cracking occurred during the cooling

f this layer far below the melt pool and associated thermal oscillations.

Following the same procedure, all four crack locations in the sample

f the build job #2 are associated with a certain AE activity ( Fig. 6 ).
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Fig. 6. μ-CT (a), AE (b), and baseplate temperature (c) data synchronized on the time scale during BJ2. Arrows indicate the correlation between registered AE crack 

events (red triangles) and crack locations of the sample. 
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to avoid delayed cracking. 
he first 15 crack signals refer to the area close to the baseplate, of

hich only one crack (#1) remained after cut-off. Crack #2 was formed

 minutes after the completion of the respective layer, as shown by the

ollowing AE signal. Although crack site #2 consisted of three cracks,

nly one AE signal was detected. This means that either all the three

racks occurred simultaneously or the signals from two smaller cracks

ere below the detection threshold. According to the last two AE sig-

als, cracks #3 and #4 occurred already after the manufacturing was

ompleted during the cooling of the sample ( Fig. 6 c ). Although it is not

lear which crack of #3 and #4 belongs to which AE signal, the delay

etween the completion of the corresponding layer and the appearance

f the crack was 18-25 and 58-65 minutes, respectively, for each AE

ignal. This observation demonstrates that in addition to the manufac-

uring process, cooling also plays an important role in the quality of

-PBF and should also be monitored. 

As expected, the high number of cracks in the sample of build job #3

orrelate with the high number of AE signals ( Fig. 7 ). Due to the lack

f pre-heating, the time between the layer build-up and crack formation

as not very long, as the material needed much less time to cool down.

ue to the high number and entanglement of cracks, it is not possible to

ssign a corresponding AE signal to each crack. However, both cracks

nd AE signals form two large groups that are interconnected. In contrast

o the build job #1, build job #3 is characterized by a large number of

ow energy signals, emitted by relatively small cracks, in accordance

ith the basic relationship between the energy of the AE signal and the

efect size [23] . The registration of all crack signals, including those

ith a signal-to-noise ratio SNR < 1, requires, however, threshold-free

E monitoring and analysis, which is the goal of future work. 

.4. Statistical analysis of AE signals 

As can be seen from the plots of AE energy versus time ( Fig. 5 b,

 b, 7 b ), most of the noise can be cut-off by setting a threshold AE sig-

al energy of 10 4 V 

2 . This preserves the main AE signals emitted by

he cracks detected by μ-CT, while supressing the low-energy signals

ssociated with microcracks. In order to find a basis for future auto-

ated threshold-free classification of signals (and thus avoid high com-

utational costs) one can look for statistical parameters commonly used

or signal analysis [11] . Among the other parameters, three were most
5 
eaningful in the present case: root mean square (RMS), skewness and

urtosis (calculated according to Eqs. 1 - 3 ) of the time series of the sig-

als ( Fig. 8 ). The distribution of the RMS is similar to that of a signal

nergy: all noise signals have an RMS below 0.4 V, while most detrimen-

al cracks emit signals with higher values ( Fig. 8 a-c ). The scatterplot of

he skewness vs. kurtosis axes clearly shows that all the crack-related

E signals are in a tiny area close to zero, i.e. they have minimal 3 rd 

nd 4 th standardized moments ( Fig. 8 d-f ). Expressed in numbers, crack

ignals range from 0 to 15 for the kurtosis and from - 0.4 to 0.5 for the

kewness. 

.5. Analysis of cracks 

The observed cracks and ways to avoid them can be categorized as

ollowing: 

• In all three experiments, cracks occurred at the interface between

the baseplate and the sample. Thus, the use of support structures

is strongly recommended, not only to facilitate the removal of the

manufactured parts, but also to avoid their possible damage due to

cracking. 
• The strong cracking in BJ3 shows that a preheating of at least 200

°C is required to produce crack-free parts. This temperature is in

good agreement with the behaviour of thermal volume expansion

parameter of aluminium, which increases sharply from 20 to 200 °C

[24] 
• Cracks between “overmelting ” and “cracking ” zones in BJ2 and BJ3

can be avoided by using one set of manufacturing parameters within

one build job. 
• The delayed cracking occurred not only during manufacturing

(cracks at 3-4 mm height in all samples) but also during cooling

(such as cracks #3 and #4 in BJ2). A high cooling rate or thermal

gradients do not seem to be the cause, as both parameters are much

higher near the melting pool where no cracking was observed. The

reason for cracking lies in the mechanical properties of an alloy,

which becomes harder (and, consequently, more fragile) with in-

creasing cooling rate [19] . Since not a single crack was observed in

the “overmelting ” region, it can be recommended to adjust the “op-

timal ” manufacturing parameters to a higher energy input in order
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Fig. 7. μ-CT (a), AE (b), and baseplate temperature (c) data synchronized on the time scale during BJ3. Arrows indicate correlation between registered AE crack 

events (red triangles) and crack sites of the sample. 

Fig. 8. Distribution of the registered AE signals in terms of crack (red points) and noise (black points) within the parameters RMS, kurtosis, and skewness. 
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Finally, the analysis of the AE data in relation to μ-CT shows that not

ll cracks can be detected with a threshold method (ex. triple crack #2

n BJ2). Thus, to capture the total cracking activity, one should either

educe the noise (e.g. by isolating the circulation pump by reinstallation

t outside of the AM machine), or process AE data without a threshold.

or an efficient monitoring of L-PBF processes using the AE method,

oth threshold and stream approaches would benefit greatly from the

se of a machine learning (ML) algorithm. Based on the findings of the

resent study, ML can efficiently implement parameter-based rules for
 o  

6 
n situ classification and clustering of incoming AE data. Therefore, the

mplementation of ML to the planned AE monitoring system of L-PBF is

he goal of future work. 

. Conclusions 

In the present work, in situ AE monitoring of L-PBF manufacturing

f a high-strength Al 92 Mn 6 Ce 2 alloy was combined with ex situ X-ray
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[  
icro-computed tomography. After joint data processing and analysis,

he following conclusions can be drawn: 

• Although the built-in inert gas circulation pump of the L-PBF ma-

chine significantly increases the noise level, it is still possible to reg-

ister the AE activity related to cracking using a simple threshold

approach. 
• AE signals related to cracking can be easily distinguished from noise

signals not only by a certain shape of the waveform but also by statis-

tical parameters such as signal energy, RMS, skewness and kurtosis

of the time series. 
• There is a clear relation between the cracks directly observed with

μ-CT and the AE signals. A significant proportion of the crack sig-

nals occur in the first five minutes after the initialization of the

build job and correspond to the formation of cracks close to the

baseplate. 
• The time between built-up of a particular layer and the appearance of

a crack can take up to an hour after the completion of the AM build,

indicating that, in addition to the manufacturing process, cooling

also plays an important role in the quality of L-PBF components and

should also be monitored. 
• Conventional methods of in situ monitoring of L-PBF usually focus

on the melt pool, i.e. currently fabricated layer, and are not able to

detect a crack with delayed formation. In contrast, the AE method

allows the detection of cracks regardless of their spatial and temporal

location. 

In general, the obtained results have shown that even a simple

hreshold-based AE monitoring with a structure-borne high frequency

ensor is sufficient and suitable for in situ detection of cracks that occur

ot only during the additive manufacturing process itself, but also af-

erwards during cooldown. The detection of micro-cracks with SNR < 1

equires threshold-free AE monitoring and more costly data processing,

hich is in the goal of future work. 
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