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Abstract. The implementation of a phenomenological, macroscopic model for TRIP-
steels in the finite element code ABAQUS is presented. The model takes into account both
the strain-rate dependent flow behaviour of the two phases, austenite (γ) and martensite
(α′), and the temperature and stress state dependent γ → α′ phase transformation. In
order to solve the system of nonlinear equations, which results from the implicit integration
of the constitutive model, the application of an affine trust-region approach is proposed
to compute strictly feasible solutions. Furthermore, model predictions are compared with
experimental results obtained from tensile tests on notched specimens.

1 INTRODUCTION

A common feature of many TRIP-steels is their favourable combination of high strength
and pronounced ductility. These properties also apply to a newly developed as cast TRIP-
steel [1] and are attributed to the inelastic deformation of the two phases austenite (γ) and
martensite (α′) and the strain-induced γ → α′ phase transformation, which accompanies
the deformation. The cast TRIP-steel possesses a fully austenitic, coarse grain initial
microstructure and the transformation proceeds by the formation of shear bands within
the grains and subsequent nucleation of martensite within these bands [2]. It has been
found that the transformation behaviour is rather sensitive to temperature and strain
rate [3]. Therefore, an adequate material model is required to describe the complex
material behaviour of the TRIP-steel.
An approach, which has been successfully applied to develop macroscopic models for
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TRIP-steels relies on the computation of effective properties of composites. Herein, TRIP-
steels are considered as composites with evolving microstructure [4], [5], [6]. In the current
paper, we also follow this approach and give an extension of the model proposed in [6]. The
composite approach is advantageous, because it allows insight into the stress and strain
levels in the single phases of the TRIP-steel as their constitutive response is explicitly
taken into account. However, the burden of such a procedure is the increased complexity
and possibly additional nonlinearity of the model due to the required homogenisation
process. Therefore, more elaborated numerical methods might be required to solve the
nonlinear equations, associated with the implicit integration of the constitutive model.
Besides the required starting point, the physical nature of the independent variables or
numerical considerations impose certain restrictions on these variables in order to exclude
infeasible solutions. In case of viscoplastic models, it has been shown by de Souza Neto [7]
that the commonly applied Newton’s method is not appropriate to handle such bounds.
In this paper an affine trust-region method [8] is applied to solve the bound constrained
nonlinear equations, which arise from the implicit integration procedure.
Throughout this paper symbolic notation is employed, where A andA denote fourth order
and second order tensors, respectively. The norm of A is defined as ‖A‖ =

√
A : A.

Vectors are given in matrix notation, i.e. the norm of a vector is described as ‖A‖ =√
ATA. The Jacobian of a vector function F(x) is introduced as F′ = ∂Fi

∂xj
. The fourth order

isotropic tensor and the Kronecker symbol are given as I = 1
2
(δikδjl+δilδjk)ei⊗ej⊗ek⊗el

and I = δijei ⊗ ej, respectively. The material time derivative is expressed as ˙( ) = d( )
dt

.

2 MATERIAL MODEL

In order to describe the response of the TRIP-steel under arbitrary large deformations,
the finite deformation theory is employed to formulate the corresponding constitutive
equations. An additive split of the rate of deformation tensor according to

D = De +Dvp +Dtrip (1)

is carried out. The elastic and the viscoplastic rates of deformation are denoted by
De and Dvp, respectively, whereas the rate of deformation associated with the phase
transformation is termed Dtrip. The assumption of small elastic strains, generally valid in
metal plasticity, allows to formulate the constitutive law as a linear, hypoelastic relation

�

Σ = C : De (2)

that connects the Jaumann rate of the Cauchy stress and the elastic rate of deformation
tensor [9]. In the case of isotropic elasticity the elastic modulus tensor

C = 2GI+ (K −
2

3
G)I⊗ I (3)

2
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is described in terms of the shear modulus G and the bulk modulus K. This approach
assumes identical elastic properties of the two phases austenite and martensite. The
viscoplastic rate of deformation is defined as

Dvp =
1

2
ΘhomS, (4)

where S denotes the deviator of the Cauchy stress and Θhom the viscoplastic compli-
ance of the two-phase composite, which is determined by homogenising the viscoplastic
response of the single phases. During phase transformation both volumetric and devia-
toric deformations occur. Therefore, the rate of deformation associated with the phase
transformation takes the form

Dtrip = ḟm

(
RN+

1

3
∆vI

)
. (5)

Herein, the volumetric transformation strain is denoted by ∆v, while

R = R0 +R1
Σ̄

σ∗
a

(6)

is the stress dependent magnitude of the deviatoric transformation strain, whose direction
is given in terms of the normalized stress deviator N = S/‖S‖. The von Mises equivalent

stress is computed as Σ̄ =
√

3
2
‖S‖. The transformation strain is controlled by the rate of

the martensite volume fraction ḟm.
Due to the significant difference in the flow behaviour of the two phases, their rate de-
pendent flow behaviour is modeled separately. Therefore, each phase is described by
a unified viscoplastic model of the von Mises type, i.e. the viscoplastic deformation is
strictly deviatoric. The viscoplastic equivalent strain rate is defined as

˙̄εvp(r) = ε̇0(r)

(
σ̃(r)

σy
(r)

)m(r)

, (7)

where σ̃(r), σ
y
(r) and ε̇0(r) denote the equivalent stress, the yield stress and the reference

strain rate of the phase r, which can be either austenite (a) or martensite (m). The
isotropic strain hardening of each phase is considered by using the power law

σy
(r) = A(r) + B(r)(ε̄

vp
(r))

q(r) . (8)

According to the variational principle for the homogenisation of nonlinear composites,
described in [10], the equivalent stresses σ̃(r) can be related to macroscopic equivalent
stress Σ̄ as

σ̃(r) = Σ̄

√
1

f(r)

∂Θhom

∂Θ(r)
. (9)

3
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This relation holds, if the composite consists of isotropic phases arranged in a statistically
uniform and isotropic manner. In order to evaluate this expression, a description of the
homogenised compliance Θhom in terms of the compliances of the single phases Θ(r) is
required. Here the bound

Θhom =
fm(

2
Θa

+ 3
Θ
) + fa(

2
Θm

+ 3
Θ
)

fm
Θm

( 2
Θa

+ 3
Θ
) + fa

Θa
( 2
Θm

+ 3
Θ
)
, (10)

as proposed by Hashin Shtrikman [11], is used. It should be noted that Θ = max(Θa,Θm)
and the volume fraction of austenite is defined as fa = 1−fm. The viscoplastic compliances
of the single phases

Θ(r) =
3

σ̃(r)

˙̄εvp(r) =
3ε̇0(r)
σ̃(r)

(
σ̃(r)

σy
(r)

)m(r)

(11)

correspond to a linearized form of Eq. (7).
In order to describe the phase transformation behaviour of the cast TRIP-steel, the macro-
scopic transformation model by Stringfellow [5] is extended. This model is inspired by the
experimental observation that martensite nucleates predominantly at shear band inter-
section, which have been formed prior to the nucleation event. Following the derivation
in [5], an evolution equation for the martensite volume fraction of the form

ḟm = (1− fm)(A ˙̄εvpa + B(ġ − ˙̄g)) (12)

is proposed. Herein, the thermodynamical driving force g for the martensite evolution

g = g0 − g1ϑ+ g2ϑ
2 + g3(∆vp+

√
2

3
RΣ̄) (13)

is taken as a function of the hydrostatic stress p = 1
3
Σ : I, the von Mises equivalent stress

Σ̄ and the normalized temperature ϑ

ϑ =
T −Mσ

s

Md −Mσ
s

, (14)

where T and Mσ
s correspond to the temperature and the start temperature for stress-

induced martensite formation, respectively. Md is the highest temperature, at which
martensite can be mechanically induced [12]. The mean transformation barrier ḡ is as-
sumed to depend on the viscoplastic equivalent strain in the austenite in the form

ḡ = ḡ0 + ḡ1ε̄
vp
a . (15)

This approach incorporates the effect that the energy required for the accommodation
of the martensite nuclei in the surrounding matrix material depends on the viscoplastic

4
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deformation of the austenite prior to the nucleation [13]. The parameter A that controls
the martensite formation due to an increase in nucleation sites is given as

A = aβn(fSB)
n−1(1− fSB)P . (16)

The formation of shear bands in austenite is modeled via the volume fraction of shear
bands fSB, whose evolution is described according to

ḟSB = (1− fSB)a ˙̄ε
vp
a . (17)

The rate of shear band formation a is taken as function of the temperature T and the
stress triaxiality h = p/Σ̄ in the form

a = a1 + a2T + a3T
2 − a4 arctan(h) . (18)

To account for the observation that under given values of the driving force and the trans-
formation barrier martensite is formed only at a certain fraction of potential nucleation
sites, the following function P is introduced.

P =
1

√
2πsg

g∫

−∞

exp

[

−
1

2

(
g′ − ḡ

sg

)2
]

dg′ (19)

The parameter B, which incorporates the change in martensite volume fraction due to a
change in the driving force and the transformation barrier is given as

B = β(fSB)
ndP

dg
H(Ṗ ) . (20)

It should be noted that β, n and H(Ṗ ) in equation (16) and (20) describe two geometrical
constants and the unit step function, respectively.

3 IMPLEMENTATION

3.1 Integration of the material model

The constitutive model, described in Sect. 2, is implemented in the finite element
program ABAQUS using the user subroutine interface UMAT. The applied incremental,
iterative solution strategy requires the integration of the rate form of the constitutive
equations in the context of finite deformations over a finite time increment ∆t = t|n+1−t|n.
In the following, quantities at the beginning and the end of the increment are indicated
by ()|n and ()|n+1, respectively, while the increments of these quantities are defined as
∆ = ()|n+1− ()|n. The integration is carried using the algorithm proposed by Hughes and
Winget [14], because it preserves the objectivity incrementally. When applied to a second
order tensor A, it takes the form

A|n+1 = ∆R ·A|n ·∆RT +∆A(∆E), (21)

5
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where ∆R and ∆E denote the increment in rotation and an approximation of the strain
increment, respectively. The last term of the right hand side corresponds to the change in
A as a result of the strain increment ∆E associated with ∆t. Under suitable assumptions
regarding the rotation of the principle axis of the strain, the time integration of Eq. (1)
yields the incremental relation

∆E = ∆Ee +∆Evp +∆Etrip. (22)

Due to its unconditional stability, the integration is carried out using a one-step implicit
integration scheme. Therefore, the inelastic strain increments are calculated by

∆Evp =
∆t

2
Θhom|n+1S|n+1 (23)

and

∆Etrip = ∆fm

(
R|n+1N|n+1 +

1

3
∆vI

)
. (24)

The stress increment is computed according to

∆Σ = C : (∆E−∆Evp −∆Etrip) (25)

after the stress at the beginning of the increment is rotated as described in Eq. (21).
The constitutive description of the viscoplastic behaviour of the single phases, which has
been introduced in Eq. (7),(8) and (11), is given in the discretized form as

˙̄εvp(r)|n+1 = ε̇0(r)

(
σ̃(r)|n+1

σy
(r)|n+1

)m(r)

(26)

Θ(r)|n+1 =
3ε̇0(r)

σ̃(r)|n+1

(
σ̃(r)|n+1

σy
(r)|n+1

)m(r)

(27)

σy
(r)|n+1 = A(r) + B(r)(ε̄

vp
(r)|n + ˙̄εvp(r)|n+1∆t)q(r) , (28)

while the equivalent stresses are computed as

σ̃(r)|n+1 = Σ̄|n+1

√
1

f(r)|n+1

∂Θhom

∂Θ(r)

∣∣∣∣
n+1

. (29)

The evolution of the martensite volume fraction over the time increment ∆t is approxi-
mated with

∆fm = (1− fm|n+1)(A|n+1 ˙̄ε
vp
a |n+1 + B|n+1(ġ|n+1 − ˙̄g|n+1))∆t . (30)

6
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The incremental change in the volume fraction of shear bands is obtained from

∆fSB = (1− fSB|n+1)a|n+1 ˙̄ε
vp
a |n+1∆t . (31)

Using Eq. (13) and (15) the rate of the driving force and the transformation barrier are
given at the end of the increment as

ġ|n+1 = −g1ϑ̇|n+1 + 2g2ϑ|n+1ϑ̇|n+1 + g3

(
∆vṗ|n+1 +

√
2

3

(
R + Σ̄

∂R

∂Σ̄

) ∣∣∣∣
n+1

˙̄Σ|n+1

)
(32)

˙̄g|n+1 = ḡ1 ˙̄ε
vp
a |n+1 , (33)

respectively.
According to Papatriantafillou [6], the nonlinear, implicit tensor equation (25) can be
efficiently solved by applying the integration algorithm proposed by Aravas [15] in the
case of pressure dependent plasticity models. We follow this approach and state the
resulting two nonlinear equation for the stress invariants.

p|n+1 = ptrial|n+1 −K∆E in (34)

Σ̄|n+1 = Σ̄trial|n+1 − 3G∆Ḡin (35)

The trial stress Σtrial is obtained from Eq. (25) by

Σtrial|n+1 = Σ|n + C : ∆E . (36)

The quantities ∆Ein and ∆Ḡin are defined as

∆Ein = (∆Evp +∆Etrip) : I = ∆v∆fm (37)

∆Ḡin =

√
2

3

(
∆Evp +∆Etrip −

1

3
I∆Ein

)
:

(
∆Evp +∆Etrip −

1

3
I∆Ein

)

= ∆fm

√
2

3
R|n+1 +

∆t

3
Θhom|n+1Σ̄|n+1 . (38)

In order to compute the stress at the end of the increment, ∆Ḡin and fm|n+1 are taken as
the primary unknowns and the Eq. (30) and (38) are reformulated as residuals.
The determination of the quantities at level of the single phases, namely ˙̄εvp(r)|n+1, Θ(r)|n+1,

σy
(r)|n+1 and σ̃(r)|n+1 requires the solution of the system of equations defined by (26)

to (29). According to the proposal in [6], the introduction of the ratio of the viscoplastic
compliance Xm = Θm

Θa
allows for a reduction of the two nonlinear equations (27) to a single

equation. In contrast to [6] the yield stresses in both phases are evaluated at the end of

7
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the increment. Therefore, equation (26) and (29) are included in (28), which leads to the
following system of equations

Xm|n+1 =
ε̇0m
ε̇0a

(σy
a |n+1)

ma

(σy
m|n+1)mm

(√
1

fm|n+1

∂Θhom

∂Θm

∣
∣
n+1

)mm−1

(√
1

fa|n+1

∂Θhom

∂Θa

∣
∣
n+1

)ma−1 (Σ̄|n+1)
mm−ma (39)

σy
a |n+1 = Aa + Ba




ε̄vpa |n +∆tε̇0a




Σ̄|n+1

√
1

fa|n+1

∂Θhom

∂Θa

∣
∣
n+1

σy
a |n+1





ma





qa

(40)

σy
m|n+1 = Am + Bm




ε̄vpm |n +∆tε̇0m




Σ̄|n+1

√
1

fm|n+1

∂Θhom

∂Θm

∣
∣
n+1

σy
m|n+1





mm





qm

. (41)

Note that the derivatives ∂Θhom

∂Θa
and ∂Θhom

∂Θm
also dependent on Xm and the solution of the

system of implicit equations requires iterative methods, which are described in Sect. 3.2.
Once the above equations are solved together with Eq. (30) and (38), the viscoplastic
and the transformation strain can be updated based on the trial stress and determined
quantities according to Eq. (23) and (24).
The use of an implicit integration scheme for the constitutive equations necessitates the
computation of the consistent material tangent, which is defined as

C
t|n+1 =

∂Σ

∂E

∣
∣
∣
∣
n+1

= C− C : M|n+1 : C . (42)

The tensor M|n+1 takes the form

M|n+1 =
1

3
∆v

∂fm
∂Σtrial

∣
∣
∣
∣
n+1

⊗ I+
3

2

(
∂∆Ḡin

∂Σtrial

∣
∣
∣
∣
n+1

⊗M|n+1 +∆Ḡin ∂M

∂Σtrial

∣
∣
∣
∣
n+1

)

. (43)

The derivatives of fm and ∆Ḡin with respect to the trial stress tensor are obtained by
implicit differentiation of the residual form of Eq. (30) and (38). The differentiation of
the normalized stress deviator M = S/Σ̄ is carried out consistent with [16]. Note that the
resulting consistent material tangent is unsymmetric due to the mutual coupling between
fm and ∆Ḡin.

3.2 Numerical solution of the nonlinear systems of equations

As mentioned in Sect. 3.1, iterative methods are required the solve the two systems of
equations (rI, rII), which are given by Eqs. (39) to (41) and Eq. (30) and (38), respectively.
Due to the choice of independent variables in the corresponding systems, the staggered

8
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solution procedure shown in Fig. 1 is proposed. In order to avoid iterates that are unphys-
ical due to the irreversible nature of the inelastic processes and may lead to numerical
difficulties, the following bounds are introduced (see Tab. 1).

Table 1: Bounds on variables

0 ≤ ∆Ḡin fm|n ≤ fm|n+1

0 ≤ Xm|n+1 σy
a |n ≤ σy

a |n+1

σy
m|n ≤ σy

m|n+1

rI(Xm, σa
y , σ

m
y ) = 0

rII(∆Ḡin, fm) = 0

Σ|n+1,C|n+1

Σ|n,∆E

Figure 1: Staggered solution algorithm

As Newton’s method is not intended for handling such bounds and truncating the New-
ton step may result in poor convergence when approaching a bound, an interior global
method proposed by Bellavia et al. [8] is used. This method belongs to the group of affine
trust-region methods and is able to solve problems of the kind

F(x) = 0 , l ≤ x ≤ u , (44)

where F is a system of nonlinear equations and x is the vector of independent variables,
while l and u denote given lower and upper bounds. As the use of such a method is not
commonly employed in the context of constitutive modelling, the method is briefly de-
scribed. When applying this method to solve Eq. (44), the computed steps are guaranteed
to sufficiently reduce the norm ‖F(x)‖ and to stay strictly inside the feasible region. This
requires the solution of an elliptical trust-region problem

min
q

{mk(q) : ‖Dkq‖ ≤ ∆k} (45)

at every iteration k, where

mk(q) =
1

2
‖Fk‖+ FT

kF
′
kq +

1

2
qTF′T

k F′
kq . (46)

The sufficient reduction is ensured by adjusting the step size of q via the trust-region radius
∆k, while the scaling matrix Dk, which measures the distance of the current iterate to the
bound, is used to adapt the current step q in order to generate feasible iterates. According
to [8] the method shows quadratic convergence even to solutions on the boundary of the
feasible region and is not much more computational expensive than a conventional Newton
iteration. Due to these favourable properties, the affine trust-region method is employed
in the solution of both systems of equations (rI, rII) that arise from the implicit integration
of the material model. The interested reader is referred to [8] for convergence proofs and
implementation issues.

9
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Table 2: Material parameters

Aa [MPa] Ba [MPa] qa Am [MPa] Bm [MPa] qm a1 a4
180 1564 0.83 1429 276 0.86 4.61 0.13

ḡ0 [ mJ
mm3 ] ḡ1 [ mJ

mm3 ] sg [ mJ
mm3 ] R0 R1 n β ∆v

207 20 178 0.0284 0.0574 2.61 1.4 0.04

Mσ
s [◦C] Md [◦C] K [MPa] G [MPa] g0 [ mJ

mm3 ] g1 [ mJ
mm3 ] g2 [ mJ

mm3 ] g3
20 100 123077 77419 330 71.6 0.56 1

σ∗
a ma ε̇0a [s−1] mm ε̇0a [s−1] a2 a3

387 30 0.001 40 0.001 0 0

4 RESULTS

The material model presented in Sect. 2 is applied to describe the deformation be-
haviour of a newly developed CrMnNi cast TRIP-steel [1]. The model has been calibrated
using data from both tensile and compression tests to account for the tension-compression
asymmetry included in the model. The mechanical tests were carried out at room tem-
perature under quasistatic loading conditions. Details of the employed parameter iden-
tification strategy are given in [17]. The identified parameters are included in the upper
half of Tab. 2. Furthermore, the constant parameters listed in the lower half of Tab. 2
are used, which were obtained either by thermodynamical calculation (g0, g1, g2), direct
measurement (K,G) or have been assumed as in case of temperature and strain rate de-
pendent material behaviour. In order to evaluate the capabilities of the calibrated model
to predict the deformation behaviour under different inhomogeneous triaxial stress states,
a series of notched tensile tests has been conducted. The corresponding specimens were
manufactured with notch radii R = {1, 2, 4, 8mm}. The measurements were accomplished
under displacement control at a constant rate of 0.5mm/min employing a servohydraulic
test machine MTS Landmark 100. During the test, force and displacement were recorded
utilizing the built-in load cell of the test machine and a MTS extensiometer. Addition-
ally, the notch radius and the diameter reduction at the notch root were measured during
deformation by an optical extensiometer. Consistent with the experiment, a gauge length
L = 35mm, an outer diameter D = 12mm and a diameter d = 6mm of the minimum
section of the notched tensile specimen were used in the finite element model to simulate
the notched tensile tests with the finite element code ABAQUS. Due to the symmetries
intrinsic to the problem, only the upper half of the specimen is modeled, employing linear
axisymmetrical elements (CAX4). The boundary value problem is depicted in Fig. 2. The
displacement in positive z-direction is uniformly prescribed at the top of the specimen
according to the experimental procedure. The experimentally determined force displace-
ment curves for different notch radii are shown in Fig. 3 together with the corresponding

10
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Stefan Prüger, Meinhard Kuna, Kai Nagel and Horst Biermann

R

r

z

L/2

d/2

D/2

Figure 2: Notched tensile specimen Figure 3: Comparison between experiments (◦) and simulation

results of the simulation. Reasonable good agreement between the results from the simu-
lation and the experimental measurements is observed, although the model overestimates
the force displacement curve in case of low stress triaxialities. It can be concluded that
the model is able to capture the effect of stress triaxiality on the force displacement curve.

5 CONCLUSIONS

In the current paper the implementation of a macroscopic material model for TRIP-
steels into the finite element code ABAQUS has been presented. A staggered solution
procedure is used to solve the coupled systems of nonlinear equations, which result from
the implicit integration of the constitutive model. The computation of infeasible solutions
is avoided by applying an affine trust-region approach. The calibrated model is employed
to predict the force displacement curve of notched tensile tests. Reasonable good agree-
ment can be observed, if model predictions are compared to experimental results.
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