425 research outputs found

    Prediction of the consequences of a CO2 pipeline release on building occupants

    Get PDF
    Carbon Capture and Storage (CCS) is recognised as one of a suite of solutions required to reduce carbon dioxide (CO2) emissions into the atmosphere and prevent catastrophic global climate change. In CCS schemes, CO2 is captured from large scale industrial emitters and transported to geological sites, such as depleted oil or gas fields or saline aquifers, where it is injected into the rock formation for storage. Pipelines are acknowledged as one of the safest, most efficient and cost-effective methods for transporting large volumes of fluid over long distances and therefore most of the proposed schemes for CCS involve onshore and/or offshore high pressure pipelines transporting CO2.In order to manage the risk in the unlikely event of the failure of a CO2 pipeline, it is necessary to define the separation distance between pipelines and habitable dwellings in order to ensure a consistent level of safety. For natural gas pipelines, existing and accepted QRA (Quantitative Risk Assessment) techniques can be implemented to define safety zones based on thermal hazards. However for high pressure CO2 pipelines, for which the hazard is toxic, the consequences of failure need to be considered differently, which will impact on the QRA assessment and the definition of safety distances.The requirement to develop a robust QRA methodology for high pressure CO2 pipelines has been recognised by National Grid as being critical to the implementation of CCS. Consequently, as part of the COOLTRANS (CO2 Liquid pipeline TRANSportation) research programme, failure frequency and consequence models are being developed that are appropriate for high pressure CO2 pipelines. One of the key components in the consequence modelling of a release from a CO2 pipeline is an infiltration model for CO2 into buildings to describe the impact on people inside buildings, and outside seeking shelter, during a release event.This paper describes the development of an infiltration model to predict how the concentration of CO2 within a building will change based on both wind driven and buoyancy driven ventilation of an external CO2 cloud into the building. The model considers the effects of either a constant or changing external concentration of CO2 during a release and allows the density effects of the dense cloud to be taken into account to enable the toxic effects on people within the building to be predicted. The paper then demonstrates how the ventilation model can be coupled to the results of a dispersion analysis from a pipeline release under different environmental conditions to develop the consequence data required for input into the QRA. These effects are illustrated through a case study example

    Assessment of the applicability of failure frequency models for dense phase carbon dioxide pipelines

    Get PDF
    In Carbon Capture, Usage and Storage (CCUS) schemes, Carbon Dioxide (CO2) is captured from large scale industrial emitters and transported to geological sites for storage. The most efficient method for the transportation of CO2 is via pipeline in the dense phase. CO2 is a hazardous substance which, in the unlikely event of an accidental release, could cause people harm. To correspond with United Kingdom (UK) safety legislation, the design and construction of proposed CO2 pipelines requires compliance with recognised pipeline codes. The UK code PD-8010-1 defines the separation distance between a hazardous pipeline and a nearby population as the minimum distance to occupied buildings using a substance factor. The value of the substance factor should be supported by the results of a Quantitative Risk Assessment (QRA) approach to ensure the safe design, construction and operation of a dense phase CO2 pipeline. Failure frequency models are a major part of this QRA approach and the focus of this paper is a review of existing oil and gas pipeline third-party external interference failure frequency models to assess whether they could be applied to dense phase CO2 pipelines. It was found that the high design pressure requirement for a dense phase CO2 pipeline typically necessitates the use of high wall thickness linepipe in pipeline construction; and that the wall thickness of typical dense phase CO2 pipelines is beyond the known range of applicability for the pipeline failure equations used within existing failure frequency models. Furthermore, even though third party external interference failure frequency is not sensitive to the product that a pipeline transports, there is however a limitation to the application of existing UK fault databases with to onshore CO2 pipelines as there are currently no dense phase CO2 pipelines operating in the UK. Further work needs to be conducted to confirm the most appropriate approach for calculating failure frequency for dense phase CO2 pipelines, and it is recommended that a new failure frequency model suitable for dense phase CO2 pipelines is developed that can be readily updated to the latest version of the fault database

    Analytical and computational indoor shelter models for infiltration of carbon dioxide into buildings : comparison with experimental data

    Get PDF
    This paper describes two indoor shelter models – an analytical model and a Computational Fluid Dynamics (CFD) model - that can be used to predict the level of infiltration of carbon dioxide (CO2) into a building following a release from an onshore CO2 pipeline. The motivation behind the development of these models was to demonstrate that the effects of shelter should be considered as part of a Quantitative Risk Assessment (QRA) for CO2 pipeline infrastructure and to provide a methodology for considering the impact of a CO2 release on building occupants.A key component in the consequence modelling of a release from a CO2 pipeline is an infiltration model for CO2 into buildings which can describe the impact on people inside buildings during a release event. This paper describes the development of an analytical shelter model and a CFD model which are capable of predicting the change in internal concentration, temperature and toxic load within a single roomed building that is totally engulfed by a transient cloud of gaseous CO2. Application of the models is demonstrated by comparison with experimental measurements of CO2 accumulation in a building placed in the path of a drifting cloud of CO2. The analytical and CFD models are shown to make good predictions of the average change in internal concentration. Furthermore, it is demonstrated that the effects of shelter should be taken into account when conducting QRA assessments on CO2 pipelines. Document type: Articl

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→μ+νW^+ \rightarrow \mu^+\nu and W−→μ−νW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO

    A connectome of the adult drosophila central brain

    Get PDF
    The neural circuits responsible for behavior remain largely unknown. Previous efforts have reconstructed the complete circuits of small animals, with hundreds of neurons, and selected circuits for larger animals. Here we (the FlyEM project at Janelia and collaborators at Google) summarize new methods and present the complete circuitry of a large fraction of the brain of a much more complex animal, the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses, and proofread such large data sets; new methods that define cell types based on connectivity in addition to morphology; and new methods to simplify access to a large and evolving data set. From the resulting data we derive a better definition of computational compartments and their connections; an exhaustive atlas of cell examples and types, many of them novel; detailed circuits for most of the central brain; and exploration of the statistics and structure of different brain compartments, and the brain as a whole. We make the data public, with a web site and resources specifically designed to make it easy to explore, for all levels of expertise from the expert to the merely curious. The public availability of these data, and the simplified means to access it, dramatically reduces the effort needed to answer typical circuit questions, such as the identity of upstream and downstream neural partners, the circuitry of brain regions, and to link the neurons defined by our analysis with genetic reagents that can be used to study their functions. Note: In the next few weeks, we will release a series of papers with more involved discussions. One paper will detail the hemibrain reconstruction with more extensive analysis and interpretation made possible by this dense connectome. Another paper will explore the central complex, a brain region involved in navigation, motor control, and sleep. A final paper will present insights from the mushroom body, a center of multimodal associative learning in the fly brain
    • …
    corecore