555 research outputs found

    Century-scale perspectives on observed and simulated Southern Ocean sea ice trends from proxy reconstructions

    Get PDF
    Since 1979 when continuous satellite observations began, Southern Ocean sea ice cover has increased, whilst global coupled climate models simulate a decrease over the same period. It is uncertain whether the observed trends are anthropogenically forced or due to internal variability, or whether the apparent discrepancy between models and observations can be explained by internal variability. The shortness of the satellite record is one source of this uncertainty, and a possible solution is to use proxy reconstructions, which extend the analysis period but at the expense of higher observational uncertainty. In this work, we evaluate the utility for change detection of 20th century Southern Ocean sea ice proxies. We find that there are reliable proxies for the East Antarctic, Amundsen, Bellingshausen and Weddell sectors in late winter, and for the Weddell Sea in late autumn. Models and reconstructions agree that sea ice extent in the East Antarctic, Amundsen and Bellingshausen Seas has decreased since the early 1970s, consistent with an anthropogenic response. However, the decrease is small compared to internal variability, and the change is not robustly detectable. We also find that optimal fingerprinting filters out much of the uncertainty in proxy reconstructions. The Ross Sea is a confounding factor, with a significant increase in sea ice since 1979 that is not captured by climate models; however, existing proxy reconstructions of this region are not yet sufficiently reliable for formal change detection

    Pulsar Timing and its Application for Navigation and Gravitational Wave Detection

    Full text link
    Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_GW ~1E-9 - 1E-7 Hz) gravitational waves. We present the current status and provide an outlook for the future.Comment: 30 pages, 9 figures. To appear in Vol 63: High Performance Clocks, Springer Space Science Review

    Discovery of Three Wide-orbit Binary Pulsars: Implications for Binary Evolution and Equivalence Principles

    Full text link
    We report the discovery of three binary millisecond pulsars during the Parkes Multibeam Pulsar Survey of the Galactic Plane. The objects are highly recycled and are in orbits of many tens of days about low-mass white-dwarf companions. The eccentricity of one object, PSR J1853+1303, is more than an order of magnitude lower than predicted by the theory of convective fluctuations during tidal circularization. We demonstrate that, under the assumption that the systems are randomly oriented, current theoretical models of the core-mass--orbital-period relation for the progenitors of these systems likely overestimate the white-dwarf masses, strengthening previous concerns about the match of these models to the data. The new objects allow us to update the limits on violation of relativistic equivalence principles to 95% confidence upper limits of 5.6 x 10^-3 for the Strong Equivalence Principle parameter Delta and 4.0 x 10^-20 for the Lorentz-invariance/momentum-conservation parameter alpha_3.Comment: 8 pages; accepted to ApJ. Small changes to parameters from including correct Parkes clock corrections; changes/corrections to Figures 1, 4 and 5; minor changes to text and references. The limit on Delta has increased from 0.0055 to 0.005

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ÏˆÎł (with J/ψ → ÎŒ + ÎŒ −) where photons are reconstructed from Îł → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +cÂŻÂŻ)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−sÂŻÂŻÂŻ quark asymmetry

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan ÎČ = 30, A 0 = −2m 0 and ÎŒ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    Measurement of the flavour composition of dijet events in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at √s=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb−1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y|<2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions

    Search for a CP-odd Higgs boson decaying to Zh in pp collisions at √s=8TeV with the ATLAS detector

    Get PDF
    A search for a heavy, CP-odd Higgs boson, A, decaying into a Zboson and a 125GeV Higgs boson, h, with the ATLAS detector at the LHC is presented. The search uses proton–proton collision data at a centre-of-mass energy of 8TeV corresponding to an integrated luminosity of 20.3fb−1. Decays of CP-even hbosons to ττor bbpairs with the Zboson decaying to electron or muon pairs are considered, as well as h →bbdecays with the Zboson decaying to neutrinos. No evidence for the production of an Aboson in these channels is found and the 95% confidence level upper limits derived for σ(gg→A) ×BR(A →Zh) ×BR(h →fÂŻf)are 0.098–0.013pb for f=τand 0.57–0.014pb for f=bin a range of mA=220–1000GeV. The results are combined and interpreted in the context of two-Higgs-doublet models. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons
    • 

    corecore