1,911 research outputs found

    Parameterized Single-Exponential Time Polynomial Space Algorithm for Steiner Tree

    Get PDF
    "In the Steiner tree problem, we are given as input a connected n-vertex graph with edge weights in {1,2,...,W}, and a subset of k terminal vertices. Our task is to compute a minimum-weight tree that contains all the terminals. We give an algorithm for this problem with running time O(7.97^k n^4 log W) using O(n^3 log nW log k) space. This is the first single-exponential time, polynomial-space FPT algorithm for the weighted Steiner tree problem." PLEASE NOTE:This is an author-created version that the author has self-archived to the "Aaltodoc" (aaltodoc.aalto.fi) faculty-level repository at Aalto University. The final publication is available at link.springer.com via the link http://dx.doi.org/10.1007/978-3-662-47672-7_40Peer reviewe

    A Rare Periosteal Diaphyseal Lesion of the Ulna

    Get PDF
    Periosteal lesions of the ulna diaphysis are rare, include a wide spectrum of tumors, and may cause considerable diagnostic problems. Surgical treatment may vary widely, based on an accurate diagnosis. We present the case of a periosteal, extraskeletal low grade myxoid chondrosarcoma of the ulna diaphysis. The surgical therapy included an en-bloc resection with allograft reconstruction. The patient showed a favorable outcome. Careful preoperative evaluation and planning are imperative to obtain a satisfactory oncological and functional outcome, especially with uncommon tumor presentations at rare locations

    Towards a large-scale quantum simulator on diamond surface at room temperature

    Full text link
    Strongly-correlated quantum many-body systems exhibits a variety of exotic phases with long-range quantum correlations, such as spin liquids and supersolids. Despite the rapid increase in computational power of modern computers, the numerical simulation of these complex systems becomes intractable even for a few dozens of particles. Feynman's idea of quantum simulators offers an innovative way to bypass this computational barrier. However, the proposed realizations of such devices either require very low temperatures (ultracold gases in optical lattices, trapped ions, superconducting devices) and considerable technological effort, or are extremely hard to scale in practice (NMR, linear optics). In this work, we propose a new architecture for a scalable quantum simulator that can operate at room temperature. It consists of strongly-interacting nuclear spins attached to the diamond surface by its direct chemical treatment, or by means of a functionalized graphene sheet. The initialization, control and read-out of this quantum simulator can be accomplished with nitrogen-vacancy centers implanted in diamond. The system can be engineered to simulate a wide variety of interesting strongly-correlated models with long-range dipole-dipole interactions. Due to the superior coherence time of nuclear spins and nitrogen-vacancy centers in diamond, our proposal offers new opportunities towards large-scale quantum simulation at room temperatures

    The BH3 mimetic ABT-737 increases treatment efficiency of paclitaxel against hepatoblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The primary goal of current chemotherapy in hepatoblastoma (HB) is reduction of tumour volume and vitality to enable complete surgical resection and reduce risk of recurrence or metastatic disease. Drug resistance remains a major challenge for HB treatment. In some malignancies inhibition of anti-apoptotic pathways using small BH3 mimetic molecules like ABT-737 shows synergistic effects in combination with cystotoxic agents in vitro. Now we analysed toxicology and synergistic effects of this approach in HB cells and HB xenografts.</p> <p>Methods</p> <p>Viability was monitored in HB cells (HUH6 and HepT1) and fibroblasts treated with paclitaxel, ABT-737 and a combination of both in a MTT assay. HUH6 xenotransplants in NOD/LtSz-scid IL2Rγnull mice (NSG) were treated accordingly. Tumour volume and body weight were monitored. Xenografted tumours were analysed by histology and immunohistochemistry (Ki-67 and TUNEL assay).</p> <p>Results</p> <p>ABT-737 reduced viability in HUH6 and HepT1 cells cultures at concentrations above 1 μM and also enhanced the cytotoxic effect of paclitaxel when used in combination. Thereby paclitaxel could be reduced tenfold to achieve similar reduction of viability of tumour cells. In contrast no toxicity in fibroblasts was observed at the same regiments. Subcutaneous HB (HUH6) treated with paclitaxel (12 mg/kg body weight, n = 7) led to delayed tumour growth in the beginning of the experiment. However, tumour volume was similar to controls (n = 5) at day 25. Combination treatment with paclitaxel and ABT-737 (100 mg/kg, n = 8) revealed significantly 10 fold lower relative tumour volumes compared to control and paclitaxel groups. Paclitaxel dependent toxicity was observed in this mice strain.</p> <p>Conclusions</p> <p>Our results demonstrate enhancement of chemotherapy by using modulators of apoptosis. Further analyses should include improved pharmacological formulations of paclitaxel and BH3 mimetics in order to reduce toxicological effects. Sensitising HB to apoptosis may also render resistant HB susceptible to established chemotherapy regimens.</p

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    Most Patients with Colorectal Tumors at Young Age Do Not Visit a Cancer Genetics Clinic

    Get PDF
    Contains fulltext : 70595.pdf (publisher's version ) (Open Access)PURPOSE: This study examined the referral process for genetic counseling at a cancer genetics clinic in patients with colorectal cancer and to search for determinants of variation in this referral process. METHODS: Patients who were recently diagnosed with colorectal cancer at a young age or multiple cancers associated with Lynch syndrome, hereditary nonpolyposis colorectal cancer, (N = 119) were selected from PALGA, the nationwide network and registry of histopathology and cytopathology in the Netherlands. In a retrospective analysis, we examined whether these patients visited a cancer genetics clinic and identified determinants for referral to such a clinic. Factors of patients, professional practice, and hospital setting were explored with logistic regression modeling. RESULTS: Thirty-six (30 percent) patients visited a cancer genetics clinic. Seventy percent of patients whom the surgeon referred to a cancer genetics clinic decided to visit such a clinic. Analysis of determinants showed that patients with whom the surgeon discussed referral and that were treated in a teaching hospital were more likely to visit a cancer genetics clinic. CONCLUSION: The referral process is not optimally carried out. To deliver optimal care for patients suspected of hereditary colorectal cancer, this process must be improved with interventions focusing on patient referral by surgeons and raising awareness in nonteaching hospitals

    Expression of the Axonal Membrane Glycoprotein M6a Is Regulated by Chronic Stress

    Get PDF
    It has been repeatedly shown that chronic stress changes dendrites, spines and modulates expression of synaptic molecules. These effects all may impair information transfer between neurons. The present study shows that chronic stress also regulates expression of M6a, a glycoprotein which is localised in axonal membranes. We have previously demonstrated that M6a is a component of glutamatergic axons. The present data reveal that it is the splice variant M6a-Ib, not M6a-Ia, which is strongly expressed in the brain. Chronic stress in male rats (3 weeks daily restraint) has regional effects: quantitative in situ hybridization demonstrated that M6a-Ib mRNA in dentate gyrus granule neurons and in CA3 pyramidal neurons is downregulated, whereas M6a-Ib mRNA in the medial prefrontal cortex is upregulated by chronic stress. This is the first study showing that expression of an axonal membrane molecule is differentially affected by stress in a region-dependent manner. Therefore, one may speculate that diminished expression of the glycoprotein in the hippocampus leads to altered output in the corresponding cortical projection areas. Enhanced M6a-Ib expression in the medial prefrontal cortex (in areas prelimbic and infralimbic cortex) might be interpreted as a compensatory mechanism in response to changes in axonal projections from the hippocampus. Our findings provide evidence that in addition to alterations in dendrites and spines chronic stress also changes the integrity of axons and may thus impair information transfer even between distant brain regions
    corecore