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Parameterized single-exponential time
polynomial space algorithm for Steiner Tree

Fedor V. Fomin1, Petteri Kaski2, Daniel Lokshtanov1, Fahad Panolan1,3, and
Saket Saurabh1,3

1 University of Bergen, Norway. {fomin|daniello}@uib.no
2 Aalto University, Finland. petteri.kaski@aalto.fi

3 Institute of Mathematical Sciences, India. {fahad|saket}@imsc.res.in

Abstract. In the Steiner tree problem, we are given as input a con-
nected n-vertex graph with edge weights in {1, 2, . . . ,W}, and a subset
of k terminal vertices. Our task is to compute a minimum-weight tree
that contains all the terminals. We give an algorithm for this problem
with running time O(7.97k ·n4 · logW ) using O(n3 · lognW · log k) space.
This is the first single-exponential time, polynomial-space FPT algorithm
for the weighted Steiner Tree problem.

1 Introduction

In the Steiner Tree problem, we are given as input a connected n-vertex
graph, a non-negative weight function w : E(G)→ {1, 2, . . . ,W}, and a set of
terminal vertices T ⊆ V (G). The task is to find a minimum-weight connected
subgraph ST of G containing all terminal nodes T . In this paper we use the
parameter k = |T |.

Steiner Tree is one of the central and best-studied problems in Computer
Science with various applications. We refer to the book of Prömel and Steger
[16] for an overview of the results and applications of the Steiner tree problem.
Steiner Tree is known to be APX-complete, even when the graph is complete
and all edge costs are either 1 or 2 [2]. On the other hand the problem admits
a constant factor approximation algorithm, the currently best such algorithm
(after a long chain of improvements) is due to Byrka et al. and has approximation
ratio ln 4 + ε < 1.39 [6].

Steiner Tree is a fundamental problem in parameterized algorithms [7].
The classic algorithm for Steiner Tree of Dreyfus and Wagner [8] from 1971
might well be the first parameterized algorithm for any problem. The study of
parameterized algorithms for Steiner Tree has led to the design of impor-
tant techniques, such as Fast Subset Convolution [3] and the use of branching
walks [13]. Research on the parameterized complexity of Steiner Tree is still
on-going, with very recent significant advances for the planar version of the
problem [14,15].

Algorithms for Steiner Tree are frequently used as a subroutine in fixed-
parameter tractable (FPT) algorithms for other problems; examples include ver-



tex cover problems [11], near-perfect phylogenetic tree reconstruction [4], and
connectivity augmentation problems [1].

Motivation and earlier work. For more than 30 years, the fastest FPT algo-
rithm for Steiner Tree was the 3k · logW · nO(1)-time dynamic programming
algorithm by Dreyfus and Wagner [8]. Fuchs et al. [10] gave an improved algo-
rithm with running time O((2 + ε)knf(1/ε) logW ). For the unweighted version
of the problem, Björklund et al. [3] gave a 2knO(1) time algorithm. All of these
algorithms are based on dynamic programming and use exponential space.

Algorithms with high space complexity are in practice more constrained be-
cause the amount of memory is not easily scaled beyond hardware constraints
whereas time complexity can be alleviated by allowing for more time for the algo-
rithm to finish. Furthermore, algorithms with low space complexity are typically
easier to parallelize and more cache-friendly. These considerations motivate a
quest for algorithms whose memory requirements scale polynomially in the size
of the input, even if such algorithms may be slower than their exponential-space
counterparts. The first polynomial space 2O(k)nO(1)-time algorithm for the un-
weighted Steiner Tree problem is due to Nederlof [13]. This algorithm runs in
time 2knO(1), matching the running time of the best known exponential space
algorithm. Nederlof’s algorithm can be extended to the weighted case, unfortu-
nately this comes at the cost of a O(W ) factor both in the time and the space
complexity. Lokshtanov and Nederlof [12] show that the O(W ) factor can be
removed from the space bound, their algorithm runs in 2k · nO(1) ·W time and
uses nO(1) logW space. Note that both the algorithm of Nederlof [13] and the
algorithm of Lokstanov and Nederlof [12] have a O(W ) factor in their running
time. Thus the running time of these algorithms depends exponentially on in-
put size, and therefore these algorithms are not FPT algorithms for weighted
Steiner Tree.

For weighted Steiner Tree, the only known polynomial space FPT al-
gorithm has a 2O(k log k) running time dependence on the parameter k. This
algorithm follows from combining a (27/4)k · nO(log k) · logW time, polynomial
space algorithm by Fomin et al. [9] with the Dreyfus–Wagner algorithm. Indeed,
one runs the algorithm of Fomin et al. [9] if n ≤ 2k, and the Dreyfus–Wagner
algorithm if n > 2k. If n ≤ 2k, the running time of the algorithm of Fomin
et al. is bounded from above by 2O(k log k). When n > 2k, the Dreyfus–Wagner
algorithm becomes a polynomial time (and space) algorithm.

Prior to this work the existence of a polynomial space algorithm with running
time 2O(k) · nO(1) · logW , i.e a single exponential time polynomial space FPT
algorithm, was an open problem asked explicitly in [9, 12].

Contributions and methodology. The starting point of our present algorithm
is the (27/4)k · nO(log k) · logW -time, polynomial-space algorithm by Fomin et
al. [9]. This algorithm crucially exploits the possibility for balanced separation
(cf. Lemma 1 below). Specifically, an optimal Steiner tree ST can be partitioned
into two trees ST1 and ST2 containing the terminal sets T1 and T2 respectively, so
that the following three properties are satisfied: (a) The two trees share exactly
one vertex v and no edges. (b) Neither of the two trees ST1 or ST2 contain more
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than a 2/3 fraction of the terminal set T . (c) The tree ST1 is an optimal Steiner
tree for the terminal set T1 ∪ {v}, and ST2 is an optimal Steiner tree for the
terminal set T2 ∪ {v}.

Dually, to find the optimal tree ST for the terminal set T it suffices to (a)
guess the vertex v, (b) the partition of T into T1 and T2, and (c) recursively
find optimal trees for the terminal sets T1 ∪ {v} and T2 ∪ {v}. Since there are n
choices for v, and

(
k
k/3

)
ways to partition T into two sets T1 and T2 such that

|T1| = |T |/3, the running time of the algorithm is essentially governed by the
recurrence

T (n, k) ≤ n ·
(
k

k/3

)
· (T (n, k/3) + T (n, 2k/3)). (1)

Unraveling (1) gives the (27/4)k · nO(log k) · logW upper bound for the running
time, and it is easy to see that the algorithm runs in polynomial space. However,
this algorithm is not an FPT algorithm because of the nO(log k) factor in the
running time.

The factor nO(log k) is incurred by the factor n in (1), which in turn origi-
nates from the need to iterate over all possible choices for the vertex v in each
recursive call. In effect the recursion tracks an O(log k)-sized set S of split ver-
tices (together with a subset T ′ of the terminal vertices T ) when it traverses the
recursion tree from the root to a leaf.

The key idea in our new algorithm is to redesign the recurrence for optimal
Steiner trees so that we obtain control over the size of S using an alternation
between

1. balanced separation steps (as described above), and
2. novel resplitting steps that maintain the size of S at no more than 3 vertices

throughout the recurrence.

In essence, a resplit takes a set S of size 3 and splits that set into three sets of
size 2 by combining each element in S with an arbitrary vertex v, while at the
same time splitting the terminal set T ′ into three parts in all possible (not only
balanced) ways. While the combinatorial intuition for resplitting is elementary
(cf. Lemma 2 below), the implementation and analysis requires a somewhat
careful combination of ingredients.

Namely, to run in polynomial space, it is not possible to use extensive amounts
of memory to store intermediate results to avoid recomputation. Yet, if no mem-
oization is used, the novel recurrence does not lead to an FPT algorithm, let
alone to a single-exponential FPT algorithm. Thus neither a purely dynamic
programming nor a purely recursive implementation will lead to the desired al-
gorithm. A combination of the two will, however, give a single-exponential time
algorithm that uses polynomial space.

Roughly, our approach is to employ recursive evaluation over subsets T ′ of
the terminal set T , but each recursive call with T ′ will compute and return the
optimal solutions for every possible set S of split vertices. Since by resplitting we
have arranged that S always has size at most 3, this hybrid evaluation approach
will use polynomial space. Since each recursive call on T ′ yields the optimum
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weights for every possible S, we can use dynamic programming to efficiently
combine these weights so that single-exponential running time results.

In precise terms, our main result is as follows:

Theorem 1. Steiner Tree can be solved in time O(7.97kn4 log nW ) time us-
ing O(n3 log nW log k) space.

Whereas our main result seeks to optimize the polynomial dependency in n
for both the running time and space usage, it is possible to trade between poly-
nomial dependency in n and the single-exponential dependency in k to obtain
faster running time as a function k, but at the cost of increased running time
and space usage as a function of n. In particular, we can use larger (but still
constant-size) sets S to avoid recomputation and to arrive at a somewhat faster
algorithm:

Theorem 2. There exists a polynomial-space algorithm for Steiner Tree run-
ning in O(6.751knO(1) logW ) time.

2 Preliminaries

Given a graph G, we write V (G) and E(G) for the set of vertices and edges of
G, respectively. For subgraphs G1, G2 of G, we write G1 +G2 for the subgraph
of G with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). For a graph
G, S ⊆ V (G) and v ∈ V (G), we use G − S and G − v to denote the induced
subgraphs G[V (G)\S] and G[V (G)\{v}] respectively. For a path P = u1u2 · · ·u`
in a graph G, we use

←−
P to denote the reverse path u`u`−1 · · ·u1. The minimum

weight of a Steiner tree of G on terminals T is denoted by stG(T ). When graph
G is clear from the context, we will simply write st(T ). For a set U and a non
negative integer i, we use

(
U
i

)
and

(
U
≤i
)

to denote the set of all subsets of U , of
size exactly i and the set of all subsets of U , of size at most i respectively. For
a set U , we write U1 ] U2 ] · · · ] U` = U if U1, U2, . . . , U` is a partition of U .

Separation and resplitting. A set of nodes S is called an α-separator of a
graph G, 0 < α ≤ 1, if the vertex set V (G) \ S can be partitioned into sets VL
and VR of size at most αn each, such that no vertex of VL is adjacent to any
vertex of VR. We next define a similar notion, which turns out to be useful for
Steiner trees. Given a Steiner tree ST on terminals T , an α-Steiner separator S
of ST is a subset of nodes which partitions ST − S in two forests R1 and R2,
each one containing at most αk terminals from T .

Lemma 1 (Separation). [5,9] Every Steiner tree ST on terminal set T , |T | ≥
3, has a 2/3-Steiner separator S = {s} of size one.

The following easy lemma enables us to control the size of the split S set at no
more than 3 vertices (see Section A in the appendix for a proof).

Lemma 2 (Resplitting). Let F be a tree and S ∈
(
V (F )

3

)
. Then there is a

vertex v ∈ V (F ) such that each connected component in F − v contains at most
one vertex of S.
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3 Algorithm

In this section we design an algorithm for Steiner Tree which runs in time
O(7.97kn4 log nW ) time using O(n3 log nW log k) space. Most algorithms for
Steiner Tree, including ours, are based on recurrence relations that reduce
finding the optimal Steiner tree to finding optimal Steiner trees in the same
graph, but with a smaller terminal set. We will define four functions fi for
i ∈ {0, 1, 2, 3}. Each function fi takes as input a vertex set S of size at most
i and a subset T ′ of T . The function fi(S, T

′) returns a real number. We will
define the functions using recurrence relations, and then prove that fi(S, T

′) is
exactly stG(T ′ ∪ S).

In the recurrences we will work with the following partitioning schemes for
the current set of terminals T ′. Let P(T ′) is the set of all possible partitions
(T1, T2, T3) of T ′ into three parts and let B(T ′) be the set of all possible partitions
(T1, T2) of T ′ into two parts such that |T1|, |T2| ≤ 2k/3.

For T ′ ⊆ T , i ∈ {0, 1, 2, 3}, and S ∈
(
V (G)
≤i
)
, we define fi(S, T

′) as follows.

When |T ′| ≤ 2, fi(S, T
′) = stG(T ′ ∪ S). For |T ′| ≥ 3, we define fi(S, T

′) using
the following recurrences.

Separation. For i ∈ {0, 1, 2}, let us define

fi(S, T
′) = min

(T1,T2)∈B(T ′)
min

v∈V (G)
S1]S2=S

fi+1

(
S1 ∪ {v}, T1

)
+ fi+1

(
S2 ∪ {v}, T2

)
(2)

Resplitting. For i = 3, let us define

fi(S, T
′) = min

(T1,T2,T3)∈P(T ′)
min

S1]S2]S3=S
|S1|,|S2|,|S3|≤i−2

v∈V (G)

3∑
r=1

fi−1
(
Sr ∪ {v}, Tr

)
(3)

The recurrences (2) and (3) are recurrence relations for Steiner Tree (see
Section B in the appendix for a proof):

Lemma 3. For all T ′ ⊆ T , 0 ≤ i ≤ 3, and S ∈
(
V (G)
≤i
)

it holds that fi(S, T
′) =

stG(T ′ ∪ S).

Our algorithm uses (2) and (3) to compute f0(∅, T ), which is exactly the
cost of an optimum Steiner tree. A näıve way of turning the recurrences into
an algorithm would be to simply make one recursive procedure for each fi, and
apply (2) and (3) directly. However, this would result in a factor nO(log k) in the
running time, which we seek to avoid. As the näıve approach, our algorithm has
one recursive procedure Fi for each function fi. The procedure Fi takes as input
a subset T ′ of the terminal set, and returns an array that, for every S ∈

(
V (G)
≤i
)
,

contains fi(S, T
′).

The key observation is that if we seek to compute fi(S, T
′) for a fixed T ′ and

all choices of S ∈
(
V (G)
≤i
)

using recurrence (2) or (3), we should not just iterate
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Algorithm 1: Implementation of procedure Fi for i ∈ {0, 1, 2}
Input: T ′ ⊆ T
Output: stG(T ′ ∪ S) for all S ∈

(
V (G)
≤i

)
1 if |T ′| ≤ 2 then

2 for S ∈
(
V (G)
≤3

)
do

3 A[S]← stG(T ′ ∪ S) (compute using the Dreyfus–Wagner algorithm)

4 return A

5 for S ∈
(
V (G)
≤i

)
do

6 A[S]←∞
7 for T1, T2 ∈ B(T ′) do
8 A1 ← Fi+1(T1)
9 A2 ← Fi+1(T2)

10 for S1 ] S2 ∈
(
V (G)
≤i

)
such that |S2| ≤ |S1| and v ∈ V (G) do

11 if A[S1 ] S2] > A1[S1 ∪ {v}] + A2[S2 ∪ {v}] then
12 A[S1 ] S2]← A1[S1 ∪ {v}] + A2[S2 ∪ {v}]

13 return A.

over every choice of S and then apply the recurrence to compute fi(S, T
′) because

it is much faster to compute all the entries of the return array of Fi simultaneosly,
by iterating over every eligible partition of T , making the required calls to Fi+1

(or Fi−1 if we are using recurrence (3)), and updating the appropriate array
entries to yield the return array of Fi. Next we give pseudocode for the procedures
F0, F1, F2, F3.

The procedure Fi for 0 ≤ i ≤ 2 operates as follows. (See Algorithm 1.)
Let T ′ ⊆ T be the input to the procedure Fi. If |T ′| ≤ 2, then Fi computes

stG(T ′ ∪ S) for all S ∈
(
V (G)
≤i
)

using the Dreyfus–Wagner algorithm and returns

these values. The procedure Fi has an array A indexed by S ∈
(
V (G)
≤i
)
. At

the end of the procedure Fi, A[S] will contain the value stG(T ′ ∪ S) for all

S ∈
(
V (G)
≤i
)
. For each (T1, T2) ∈ B(T ′) (line 7), Fi calls Fi+1(T1) and Fi+1(T2)

and it returns two sets of values {fi+1(S, T1) | S ∈
(
V (G)
≤i+1

)
} and {fi(S, T2) | S ∈(

V (G)
≤i
)
}, respectively. Let A1 and A2 be two arrays used to store the return

values of Fi+1(T1) and Fi+1(T2) respectively. That is, A1[S] = fi+1(S, T1) for

all S ∈
(
V (G)
≤i+1

)
and A2[S′] = fi(S

′, T2) for all S′ ∈
(
V (G)
≤i+1

)
. Now we update A

as follows. For each S1 ] S2 ∈
(
V (G)
≤i
)

and v ∈ V (G) (line 10), if A[S1 ] S2] >

A1[S1 ∪{v}] +A2[S2 ∪{v}], then we update the entry A[S1 ]S2], with the value
A1[S1 ∪ {v}] +A2[S2 ∪ {v}]. So at the end the inner for loop, A[S] contains the
value

min
v∈V (G)
S1]S2=S

fi+1(S1 ∪ {v}, T1) + fi(S2 ∪ {v}, T2).
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Algorithm 2: Implementation of procedure F3

Input: T ′ ⊆ T
Output: stG(T ′ ∪ S) for all S ∈

(
V (G)
≤3

)
1 if |T ′| ≤ 2 then

2 for S ∈
(
V (G)
≤3

)
do

3 A[S]← stG(T ′ ∪ S) (compute using the Dreyfus–Wagner algorithm)

4 return A

5 for S ∈
(
V (G)
≤3

)
do

6 A[S]←∞
7 for T1, T2, T3 ∈ P(T ′) do
8 A1 ← F2(T1)
9 A2 ← F2(T2)

10 A3 ← F2(T3)

11 for S1, S2, S3 ∈
(
V (G)
≤1

)
and v ∈ V (G) do

12 if A[S1 ∪ S2 ∪ S3] > A1[S1 ∪ {v}] + A2[S2 ∪ {v}] + A3[S3 ∪ {v}] then
13 A[S1 ∪ S2 ∪ S3]← A1[S1 ∪ {v}] + A2[S2 ∪ {v}] + A3[S3 ∪ {v}]

14 return A.

Since we do have a outer for loop which runs over (T1, T2) ∈ B(T ′), we have
updated A[S] with

min
(T1,T2)∈B(T ′)

min
v∈V (G)
S1]S2=S

fi+1(S1 ∪ {v}, T1) + fi(S2 ∪ {v}, T2).

at the end of the procedure. Then Fi will return A.

The procedure F3 works as follows. (See Algorithm 2.) Let T ′ ⊆ T be the
input to the procedure F3. If |T ′| ≤ 2, then F3 computes stG(T ′ ∪ S) for all

S ∈
(
V (G)
≤3
)

using the Dreyfus–Wagner algorithm and returns these values. The

procedure F3 has an array A indexed by S ∈
(
V (G)
≤3
)
. At the end of the proce-

dure F3, A[S] will contain the value stG(T ′ ∪ S) for all S ∈
(
V (G)
≤3
)
. For each

(T1, T2, T3) ∈ P(T ′) (line 7), F3 calls F2(T1), F2(T2) and F2(T3), and it re-

turns three sets of values {f2(S, T1) | S ∈
(
V (G)
≤2
)
}, {f2(S, T2) | S ∈

(
V (G)
≤2
)
}

and {f2(S, T3) | S ∈
(
V (G)
≤2
)
}, respectively. Let A1, A2 and A3 be three ar-

rays used to store the outputs of F2(T1), F2(T2) and F3(T3) respectively. That
is, Ar[S] = f2(S, Tr) for r ∈ {1, 2, 3}. Now we update A as follows. For each

S1, S2, S3 ∈
(
V (G)
≤1
)

and v ∈ V (G) (line 11), if A[S1 ∪ S2 ∪ S3] > A1[S1 ∪ {v}] +

A2[S2 ∪ {v}] +A3[S3 ∪ {v}], then we update the entry A[S1 ∪ S2 ∪ S3], with the
value A1[S1 ∪ {v}] + A2[S2 ∪ {v}] + A3[S3 ∪ {v}]. So at the end the inner for
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loop, A[S] contains the value

min
S1∪S2∪S3=S
|S1|,|S2|,|S3|≤1

v∈V (G)

3∑
r=1

f2(Sr ∪ {v}, Tr).

Since we do have a outer for loop which runs over (T1, T2, T3) ∈ P(T ′), we have
updated A[S] with

min
(T1,T2,T3)∈P(T ′)

min
S1∪S2∪S3=S
|S1|,|S2|,|S3|≤1

v∈V (G)

3∑
r=1

f2(Sr ∪ {v}, Tr).

at the end of the procedure. Then F3 will return A as the output.

In what follows we prove the correctness and analyze the running time and
memory usage of the call to the procedure F0(T ).

Lemma 4. For every i ≤ 3, T ′ ⊆ T the procedure Fi(T
′) outputs an array that

for every S ∈
(
V (G)
≤i
)
, contains fi(S, T

′).

Proof. Correctness of Lemma 4 follows directly by an induction on |T |. Indeed,
assuming that the lemma statement holds for the recursive calls made by the
procedure Fi, it is easy to see that each entry of the output table is exactly equal
to the right hand side of recurrence (2) (recurrence (3) in the case of F3). ut

Observation 1 The recursion tree of the procedure F0(T ) has depth O(log k).

Proof. For every i ≤ 2 the procedure Fi(T
′) only makes recursive calls to

Fi+1(T ′′) where |T ′′| ≤ 2|T ′|/3. The procedure F3(T ′) makes recursive calls
to F2(T ′′) where |T ′′| ≤ |T ′|. Therefore, on any root-leaf path in the recursion
tree, the size of the considered terminal set T ′ drops by a constant factor every
second step. When the terminal set reaches size at most 2, no further recursive
calls are made. Thus any root-leaf path has length at most O(log k). ut

Lemma 5. The procedure F0(T ) uses O(n3 log nW log k) space.

Proof. To upper bound the space used by the procedure F0(T ) it is sufficient to
upper bound the memory usage of every individual recursive call, not taking into
account the memory used by its recursive calls, and then multiply this upper
bound by the depth of the recursion tree.

Each individual recursive call will at any point of time keep a constant num-
ber of tables, each containing at most O(n3) entries. Each entry is a number
less than or equal to nW , therefore each entry can be represented using at most
O(log nW ) bits. Thus each individual recurisve call uses at most O(n3 log nW )
bits. Combining this with Observation 1 proves the lemma. ut
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Next we analyze the running time of the algorithm. Let τi(k) be the total
number of arithmetic operations of the procedure Fi(T

′) for all i ≤ 3, where
k = |T ′| on an n-vertex graph. It follows directly from the structure of the
procedures Fi for i ≤ 2, that there exits a constant C such that the following
recurrences hold for τi, i ≤ 2:

τi(k) ≤
∑

k
3≤j≤

2k
3

(
k

j

)
(τi+1(j) + τi+1(k − j) + Cn3)

≤ 2
∑

k
2≤j≤

2k
3

(
k

j

)
(τi+1(j) + Cn3) ≤ 2k max

k
2≤i≤

2k
3

(
k

j

)
(τi+1(j) + Cn3) (4)

Let
(

k
i1,i2,i3

)
be the number of partitions of k distinct elements into sets of sizes

i1, i2, and i3. It follows directly from the structure of the procedure F3, that
there exists a constant C such that the following recurrence holds for τ3:

τ3(k) =
∑

i1+i2+i3=k

(
k

i1, i2, i3

)
(τ2(i1) + τ2(i2) + τ2(i3) + Cn4)

≤
∑

i1≥i2,i3

(
k

i1, i2, i3

)
3 · (τ2(i1) + Cn4) ≤ 3

∑
i1≥ k

3

(
k

i1

)
2k−i1 · (τ2(i1) + Cn4)

≤ 3kmax
i1≥ k

3

(
k

i1

)
2k−i1 · (τ2(i1) + Cn4) (5)

Now we will bound τ3(k) from above using (4) and (5). The following facts are
required for the proof.

Fact 1 By Stirling’s approximation,
(
k
αk

)
≤
(
α−α(1− α)(α−1)

)k
[17].

Fact 2 For every fixed x ≥ 4, function f(y) = xy

yy(1−y)1−y is increasing on

interval (0, 2/3].

Lemma 6. There exists a constant C such that τ3(k) ≤ C · 11.7899kn4

Proof. We prove by induction on k, that τ2(k) ≤ Ĉk(c log k)9.78977kn4 and
τ3(k) ≤ Ĉk(c log k)11.7898kn4. We will pick Ĉ to be a constant larger than the
constants of (4) and (5), and sufficiently large so that the base case of the induc-
tion holds. We prove the inductive step. By the induction hypothesis and (4),
we have that

τ2(k) ≤ 2k max
1
3≤α≤

2
3

(
k

αk

)(
Ĉ(αk)(c logαk)11.7898αkn4 + Ĉn3

)
≤ 2k

(
11.78982/3

(2/3)2/3(1/3)1/3

)k
·

(
Ĉ

(
2k

3

)(c log 2k/3)

n4 + Ĉn3

)
(Fact 1, 2)

≤ (9.78977)k · 2k ·

(
Ĉ

(
2k

3

)(c log 2k/3)

n4 + Ĉn3

)
≤ 9.78977k · Ĉk(c log k)n4

9



The last inequality holds if c is a sufficiently large constant (independent of k).
By the induction hypothesis and (5), we have that

τ3(k) ≤ 3k max
1≥α≥ 1

3

(
k

αk

)
2(1−α)k ·

(
9.78977αk · Ĉ(αk)(c logαk)n4 + Ĉn4

)
≤ 3k max

1≥α≥ 1
3

(
α−α(1− α)(α−1)2(1−α)9.78977α

)k
·
(
Ĉ(αk)(c logαk) + Ĉn4)

)
≤ 11.7898k · Ĉk(c log k)n4

The last inequality holds for sufficiently large constants Ĉ and c. For a sufficiently
large constant C it holds that

C · 11.7899kn4 ≥ 11.7898k · Ĉk(c log k)n4,

completing the proof. ut

Lemma 7. For every i ≤ 2 and constants Ci+1 and βi+1 ≥ 4 such that for
every k ≥ 1 we have τi+1(k) ≤ Ci+1β

k
i+1n

4, there exists a constant Ci such that

τi(k) ≤ Ci · 1.8899k · β2k/3
i+1 · n4.

Proof. By (4) we have that

τi(k) ≤ 2k max
k
2≤i≤

2k
3

(
k

j

)
(τi+1(j) + Cn3)

≤ (2k + C) max
k
2≤i≤

2k
3

(
k

j

)
(Ci+1β

j
i+1n

4)

≤ Ci+1 · (2k + C) · ( 3

22/3
)k · β2k/3

i+1 · n
4

≤ Ci · 1.8899k · β2k/3
i+1 · n

4

The last inequality holds for a sufficiently large Ci depending on Ci+1 and βi+1

but not on k. ut

Lemma 8. The procedure F0(T ) uses O(7.97kn4 log nW ) time.

Proof. We show that τ0(k) = O(7.9631kn4). Since each arithmetic operation
takes at most O(log nW ) time the lemma follows. Applying Lemma 7 on the
upper bound for τ3(k) from Lemma 6 proves that

τ2(k) = O(1.8899k · 11.78992k/3n4) = O(9.790kn4).

Re-applying Lemma 7 on the above upper bound for τ2(k) yields

τ1(k) = O(1.8899k · 9.7902k/3n4) = O(8.6489kn4).

Re-applying Lemma 7 on the above upper bound for τ1(k) yields

τ0(k) = O(1.8899k · 8.64892k/3n4) = O(7.9631kn4).

This completes the proof. ut
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We are now in position to prove our main theorem.

Proof (of Theorem 1). The algorithm calls the procedure F0(T ) and returns the
value stored for f0(∅, T ). By Lemma 4 the procedure F0(T ) correctly computes
f0(∅, T ), and by Lemma 3 this is exactly equal to the cost of the optimal Steiner
tree. By Lemma 5 the space used by the algorithm is at most O(n3 log nW log k),
and by Lemma 8 the time used is O(7.97kn4 log nW ). ut

Obtaining better parameter dependence. The algorithm from Theorem 1
is based on defining and computing the functions fi, 0 ≤ i ≤ 3. The functions
fi, i ≤ 2 are defined using recurrence (2), while the function f3 is defined us-
ing recurrence (3). For every constant t ≥ 4 we could obtain an algorithm for
Steiner Tree by defining functions fi, 0 ≤ i ≤ t − 1 using (2) and ft using
(3). A proof identical to that of Lemma 3 shows that fi(S, T

′) = STG(S ∪ T ′)
for every i ≤ t.

We can now compute f0(∅, T ) using an algorithm almost identical to the
algorithm of Theorem 1, except that now we have t + 1 procedures, namely a
procedure Fi for each i ≤ t. For each i and terminal set T ′ ⊆ T a call to the
procedure Fi(T

′) computes an array containing fi(S, T
′) for every set S of size

at most i.
For i < t, the procedure Fi is based on (2) and is essentially the same as

Algorithm 1. Furhter, the procedure Ft is based on (3) and is essentially the
same as Algorithm 2. The correctness of the algorithm and an O(nt log(nW ))
upper bound on the space usage follows from arguments identical to Lemma 4
and Lemma 5 respectively.

For the running time bound, an argument identical to Lemma 6 shows that
τt(k) = O(11.7899knt+1). Furthermore, Lemma 7 now holds for i ≤ t − 1. In
the proof of Lemma 8 the bound for τ0(k) is obtained by starting with the
O(11.7899kn4) bound for τ3 and applying Lemma 7 three times. Here we can
upper bound τ0(k) by starting with the O(11.7899knt+1) bound for τt and ap-
plying Lemma 7 t times. This yields a C0 · βk0 upper bound for τ0(k), where

β0 = (11.7899(2/3)
t

)1.8899
∑t−1

i=0(2/3)
i

It is easy to see that as t tends to infinity, the upper bound for β0 tends to a
number between 6.75 and 6.751. This proves Theorem 2.
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A Proof of Lemma 2

Lemma 9 (Lemma 2 restated). Let F be a tree and S ∈
(
V (F )

3

)
. Then there

is a vertex v ∈ V (F ) such that each connected component in F − v contains at
most one vertex from S.

Proof. Let S = {s1, s2, s3}. Let P1 be the unique path between s1 and s3 in the
tree F . Let P2 be the unique path between s3 and s2 in the tree F . If P1 and P2

are edge disjoint then V (P1)∩V (P2) = {s3} and P1P2 is the unique path between
s1 and s2. Thus any connected component in G − s3 will not contain both s1
and s2. In this case s3 is the required vertex. Suppose V (P1) ∩ V (P2) 6= {s3}.
Consider the unique path

←−
P1 between s3 and s1, which is the reverse of the path

P1. Since F is a tree these paths
←−
P1 and P2 will be of the form P1 = Q

←−
P1
′ and

P2 = QP ′2. Note that Q is a path starting at s3. Let w be the last vertex in

the path Q. Since F is a tree V (
←−
P1
′) ∩ V (P ′2) = {w}. Now consider the graph

G−w. Any connected component in G−w will not contain more that one from
{s1, s2, s3}, because the unique path between any pair of vertices in {s1, s2, s3}
passes through w. ut

B Proof of Lemma 3

Lemma 10 (Lemma 3 restated). For all T ′ ⊆ T , 0 ≤ i ≤ 3, and S ∈
(
V (G)
≤i
)

it holds that fi(S, T
′) = stG(T ′ ∪ S).

Proof. We prove the lemma using induction on |T ′|. For the base case |T ′| ≤ 2
the lemma holds by the definition of fi. For inductive step, let us assume that the
lemma holds for all T ′′ of size less than j. We proceed to show that fi(S, T

′) =
stG(T ′∪S) for all T ′ ⊆ T with |T ′| = j. We split into cases based on i and in each
case establish inequalities fi(S, T

′) ≤ stG(T ′ ∪S) and fi(S, T
′) ≥ stG(T ′ ∪S) to

conclude equality.

Case 1: 0 ≤ i ≤ 2. By (2), we know that there is a vertex v ∈ V (G), S1]S2 =
S and a partition (T1, T2) ∈ B(T ′) such that fi(S, T

′) = fi+1(S1 ∪ {v}, T1) +
fi+1(S2 ∪ {v}, T2). Since (T1, T2) ∈ B(T ′) and |T ′| ≥ 3, we have that |T1|, |T2| <
|T ′|. Then by induction hypothesis fi+1(S1 ∪ {v}, T1) = stG(T1 ∪ S1 ∪ {v}) and
fi+1(S2 ∪ {v}, T2) = stG(T2 ∪ S2 ∪ {v}). So we have that fi(S, T

′) = stG(T1 ∪
S1∪{v})+stG(T2∪S2∪{v}). Let ST1 be an optimum Steiner tree for the set of
terminals T1∪S1∪{v} and ST2 be an optimum Steiner tree for the set of terminals
T2∪S2∪{v}. Note that ST1+ST2 is a connected subgraph containing T1∪T2∪S
and w(E(ST1 + ST2)) ≤ stG(T1 ∪ S1 ∪ {v}) + stG(T2 ∪ S2 ∪ {v}). This implies
that stG(T ′∪S) ≤ w(E(ST1 +ST2)) ≤ stG(T1∪S1∪{v})+stG(T2∪S2∪{v}) =
fi(S, T

′). Hence fi(S, T
′) ≥ stG(T ′ ∪ S).

Conversely, let ST be an optimum Steiner tree for the set of terminals T ′∪S.
Thus ST is also a Steiner tree for the set of terminals T ′. Hence by Lemma 1,
we know that there is a 2/3-Steiner separator {v} of size one. Let F1 and F2 be
two forests created by the separator {v}, such that V (Fr)∩T ′ ≤ 2|T ′|/3 for each
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1 ≤ r ≤ 2. If v ∈ T ′ and |T1| ≤ |T2|, then we replace T1 with T1 ∪ {v}. If v ∈ T ′
and |T1| > |T2|, then we replace T2 with T2∪{v}. Note that (T1, T2) is a partition
of T ′. Since {v} is a 2/3-Steiner separator and |T ′| ≥ 3, we have that |T1|, |T2| ≤
2|T ′|/3 < |T ′|. Hence (T1, T2) ∈ B(T ′). Let Sr = V (STr)∩S and Tr = V (Fr)∩T ′,
1 ≤ r ≤ 2. Thus fi+1(S1 ∪ {v}, T1) + fi+1(S2 ∪ {v}, T2) ≥ fi(S, T

′) Note that
ST1 = ST [V (F1) ∪ {v}] and ST2 = ST [V (F2) ∪ {v}] are subtrees of ST . By the
induction hypothesis, we have that fi+1(S1 ∪ {v}, T1) = stG(T1 ∪ S1 ∪ {v}) and
fi+1(S2 ∪ {v}, T2) = stG(T2 ∪ S2 ∪ {v}). Since ST1 and ST2 are trees containing
T1 ∪S1 ∪{v} and T2 ∪S2 ∪{v} respectively, we have w(E(ST1)) +w(E(ST2)) ≥
stG(T1 ∪ S1 ∪ {v}) + stG(T2 ∪ {v}) = fi+1(S1 ∪ {v}, T1) + fi+1(S2 ∪ {v}, T2) ≥
fi(S, T

′). Since V (ST1)∩V (ST2) = {v} and T ′∪S ⊆ V (ST1)∪V (ST2), we have
that stG(T ′ ∪ S′) = w(E(ST1)) + w(E(ST2)). Thus fi(S, T

′) ≤ stG(T ′ ∪ S).

Case 2: i = 3. By (3), there is v ∈ V (G), S1, S2, S3 ∈
(
V (G)
≤1
)
, S1]S2]S3 = S,

and a partition (T1, T2, T3) ∈ P(T ′) such that f3(S, T ′) =
∑3
r=1 f2(Sr∪{v}, Tr).

We have shown (in Case 1) that f2(Sr ∪ {v}, Tr) = stG(Tr ∪ Sr ∪ {v}) for

all 1 ≤ r ≤ 3. Therefore f3(S, T ′) =
∑3
r=1 stG(Tr ∪ Sr ∪ {v}). Let STr be

an optimum Steiner tree for the set of terminals Tr ∪ Sr ∪ {v} for all r. Note
that ST1 + ST2 + ST3 is a connected subgraph containing T1 ∪ T2 ∪ T3 ∪ S
and w(E(ST1 + ST2 + ST3)) ≤

∑3
r=1 stG(Tr ∪ Sr ∪ {v}). Thus stG(T ′ ∪ S) ≤

w(E(ST1+ST2+ST3)) ≤
∑3
r=1 stG(Tr∪Sr∪{v}) = f3(S, T ′). Thus, f3(S, T ′) ≥

stG(T ′ ∪ S).
Conversely, let ST be an optimum Steiner tree for the set of terminals T ′∪S.

By Lemma 2, there is a vertex v ∈ V (ST ) such that each connected component C
in ST −v contains at most one vertex from S. Let be C1, C2 and C3 be a partition
of connected components of ST − v such that for each |V (Cr) ∩ S| ≤ 1 for all
1 ≤ r ≤ 3. For each r, let Tr = T ′ ∩ V (Cr). If v ∈ T ′, then we replace T1 with
T1∪{v}. Note that (T1, T2, T3) is a partition of T ′. Hence (T1, T2, T3) ∈ P(T ′). For
each r, let Sr = (S \ {v}) ∩ V (STr). Since each Cr contains at most one vertex

from S, |Sr| ≤ 1. This implies
∑3
r=1 f2(Sr ∪ {v}, Tr) ≥ f3(S, T ′). Note that

STr = ST [V (Cr)∪{v}] is a tree for each r. Since V (C1)∪V (C2)∪V (C3)∪{v} =
V (ST ) and for all 1 ≤ r1 6= r2 ≤ 3 it holds that V (Cr1) ∩ V (Cr2) = {v}, we

have stG(T ′ ∪ S) = w(E(ST )) =
∑3
r=1 w(E(STr)) ≥

∑3
r=1 f2(Sr ∪ {v}, Tr) ≥

f3(S, T ′). Thus f3(S, T ′) ≤ stG(T ′ ∪ S). ut
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