660 research outputs found

    Induced Charge-Density Oscillations at Metal Surfaces

    Full text link
    Induced charge-density (ICD) oscillations at the Cu(111) surface caused by an external impurity are studied within linear response theory. The calculation takes into account such properties of the Cu(111) surface electronic structure as an energy gap for three-dimensional (3D) bulk electrons and a spzs-p_z surface state that forms two-dimensional (2D) electron system. It is demonstrated that the coexistence of these 2D and 3D electron systems has profound impact on the ICD in the surface region. In the case of a static impurity the characteristic ICD oscillations with the 1/ρ21/\rho^2 decay as a function of lateral distance, ρ\rho, are established in both electron systems. For the impurity with a periodically time-varying potential, the novel dominant ICD oscillations which fall off like 1/ρ\sim1/\rho are predicted.Comment: 11 pages, 5 figure

    Spin-density-wave instabilities in the organic conductor (TMTSF)_2ClO_4: Role of anion ordering

    Full text link
    We study the spin-density-wave instabilities in the quasi-one-dimensional conductor (TMTSF)_2ClO_4. The orientational order of the anions ClO_4 doubles the unit cell and leads to the presence of two electrnic bands at the Fermi level. From the Ginzburg-Landau expansion of the free energy, we determine the low-temperature phase diagram as a function of the strength of the Coulomb potential due to the anions. Upon increasing the anion potential, we first find a SDW phase corresponding to an interband pairing. This SDW phase is rapidly supressed, the metallic phase being then stable down to zero temperature. The SDW instability is restored when the anion potential becomes of the order of the hopping amplitude. The metal-SDW transition corresponds to an intraband pairing which leaves half of the Fermi surface metallic. At lower temperature, a second transition, corresponding to the other intraband pairing, takes place and opens a gap on the whole Fermi surface. We discuss the consequences of our results for the experimental phase diagram of (TMTSF)_2ClO_4 at high magnetic field.Comment: 13 pages, 10 figures, Version 2 with minor correction

    Orbital quantization in the high magnetic field state of a charge-density-wave system

    Full text link
    A superposition of the Pauli and orbital coupling of a high magnetic field to charge carriers in a charge-density-wave (CDW) system is proposed to give rise to transitions between subphases with quantized values of the CDW wavevector. By contrast to the purely orbital field-induced density-wave effects which require a strongly imperfect nesting of the Fermi surface, the new transitions can occur even if the Fermi surface is well nested at zero field. We suggest that such transitions are observed in the organic metal α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4 under a strongly tilted magnetic field.Comment: 14 pages including 4 figure

    Tomography of pairing symmetry from magnetotunneling spectroscopy -- a case study for quasi-1D organic superconductors

    Full text link
    We propose that anisotropic pp-, dd-, or ff-wave pairing symmetries can be distinguished from a tunneling spectroscopy in the presence of magnetic fields, which is exemplified here for a model organic superconductor (TMTSF)2X{(TMTSF)}_{2}X. The shape of the Fermi surface (quasi-one-dimensional in this example) affects sensitively the pairing symmetry, which in turn affects the shape (U or V) of the gap along with the presence/absence of the zero-bias peak in the tunneling in a subtle manner. Yet, an application of a magnetic field enables us to identify the symmetry, which is interpreted as an effect of the Doppler shift in Andreev bound states.Comment: 4 papegs, 4 figure

    Two-domains bulklike Fermi surface of Ag films deposited onto Si(111)-(7x7)

    Full text link
    Thick metallic silver films have been deposited onto Si(111)-(7x7) substrates at room temperature. Their electronic properties have been studied by using angle resolved photoelectron spectroscopy (ARPES). In addition to the electronic band dispersion along the high-symmetry directions, the Fermi surface topology of the grown films has been investigated. Using ARPES, the spectral weight distribution at the Fermi level throughout large portions of the reciprocal space has been determined at particular perpendicular electron-momentum values. Systematically, the contours of the Fermi surface of these films reflected a sixfold symmetry instead of the threefold symmetry of Ag single crystal. This loss of symmetry has been attributed to the fact that these films appear to be composed by two sets of domains rotated 60o^o from each other. Extra, photoemission features at the Fermi level were also detected, which have been attributed to the presence of surface states and \textit{sp}-quantum states. The dimensionality of the Fermi surface of these films has been analyzed studying the dependence of the Fermi surface contours with the incident photon energy. The behavior of these contours measured at particular points along the Ag Γ\GammaL high-symmetry direction puts forward the three-dimensional character of the electronic structure of the films investigated.Comment: 10 pages, 12 figures, submitted to Physical Review

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table, matches published version in Physical Review

    Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in sqrt{s} = 7 TeV pp collisions using 1 fb-1 of ATLAS data

    Get PDF
    We present an update of a search for supersymmetry in final states containing jets, missing transverse momentum, and one isolated electron or muon, using 1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the ATLAS experiment at the LHC in the first half of 2011. The analysis is carried out in four distinct signal regions with either three or four jets and variations on the (missing) transverse momentum cuts, resulting in optimized limits for various supersymmetry models. No excess above the standard model background expectation is observed. Limits are set on the visible cross-section of new physics within the kinematic requirements of the search. The results are interpreted as limits on the parameters of the minimal supergravity framework, limits on cross-sections of simplified models with specific squark and gluino decay modes, and limits on parameters of a model with bilinear R-parity violation.Comment: 18 pages plus author list (30 pages total), 9 figures, 4 tables, final version to appear in Physical Review
    corecore