45 research outputs found

    Modes of Foreign Entry under Asymmetric Information about Potential Technology Spillovers

    Get PDF
    This paper studies the effect of technology spillovers on the entry decision of a multinational enterprise into a foreign market. Two alternative entry modes for a foreign direct investment are considered: Greenfield investment versus acquisition. We find that with quantity competition a spillover makes acquisitions less attractive, while with price competition acquisitions become more attractive. Asymmetric information about potential spillovers always reduces the number of acquisitions independently of whether the host country or the entrant has private information. Interestingly, we find that asymmetric information always hurts the entrant, while it sometimes is in favor of the host country

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Searches for gravitational waves from known pulsars at two harmonics in 2015-2017 LIGO data

    Get PDF
    International audienceWe present a search for gravitational waves from 222 pulsars with rotation frequencies ≳10 Hz. We use advanced LIGO data from its first and second observing runs spanning 2015–2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the l = m = 2 mass quadrupole mode, with a frequency at twice that of the pulsar’s rotation, and the l = 2, m = 1 mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the l = m = 2 mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars’ spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711−6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of 1038 kg m2 for the star’s moment of inertia, and imply a gravitational-wave-derived upper limit on the star’s ellipticity of 1.2 × 10−8. We also place new limits on the emission amplitude at the rotation frequency of the pulsars

    Diving below the spin-down limit:constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

    Get PDF
    We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3 x 10⁻⁵, which is the third best constraint for any young pulsar

    Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

    Get PDF
    We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95\% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from Fα,Θ<(0.0137.6)×108ergcm2s1Hz1,F_{\alpha, \Theta} < {\rm (0.013 - 7.6)} \times 10^{-8} {\rm erg \, cm^{-2} \, s^{-1} \, Hz^{-1}}, and on the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from Ωα,Θ<(0.579.3)×109sr1\Omega_{\alpha, \Theta} < {\rm (0.57 - 9.3)} \times 10^{-9} \, {\rm sr^{-1}}, depending on direction (Θ\Theta) and spectral index (α\alpha). These limits improve upon previous limits by factors of 2.93.52.9 - 3.5. We also set 95\% confidence level upper limits on the frequency-dependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from h0<(1.72.1)×1025,h_0 < {\rm (1.7-2.1)} \times 10^{-25}, a factor of 2.0\geq 2.0 improvement compared to previous stochastic radiometer searches.Comment: 23 Pages, 9 Figure

    All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

    Get PDF
    After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1  s and “long” ≳1  s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo’s third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2–500 s in duration and a frequency band of 24–2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a

    Get PDF
    We search for gravitational-wave transients associated with gamma-ray bursts detected by the Fermi and Swift satellites during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15:00 UTC - 1 October 2019 15:00 UTC). 105 gamma-ray bursts were analyzed using a search for generic gravitational-wave transients; 32 gamma-ray bursts were analyzed with a search that specifically targets neutron star binary mergers as short gamma-ray burst progenitors. We describe a method to calculate the probability that triggers from the binary merger targeted search are astrophysical and apply that method to the most significant gamma-ray bursts in that search. We find no significant evidence for gravitational-wave signals associated with the gamma-ray bursts that we followed up, nor for a population of unidentified subthreshold signals. We consider several source types and signal morphologies, and report for these lower bounds on the distance to each gamma-ray burst

    All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data

    Get PDF
    We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000 Hz and with a frequency time derivative in the range of [-1.0; +0.1] x 10(-8) Hz/s. Such a signal could be produced by a nearby, spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the LIGO data from the first six months of Advanced LIGO&apos;s and Advanced Virgo&apos;s third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (C.L.) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h(0) are similar to 1.7 x 10(-25) near 200 Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are similar to 6.3 x 10(-26). These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a populationaveraged ensemble of sky locations and stellar orientations, the lowest 95% C.L. upper limits on the strain amplitude are similar to 1.4 x 10(-25). These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of similar to 2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched

    Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences

    Get PDF
    Abstract: We report the observation of gravitational waves from two compact binary coalescences in LIGO’s and Virgo’s third observing run with properties consistent with neutron star–black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo and the second by all three LIGO–Virgo detectors. The source of GW200105 has component masses 8.9−1.5+1.2 and 1.9−0.2+0.3M⊙ , whereas the source of GW200115 has component masses 5.7−2.1+1.8 and 1.5−0.3+0.7M⊙ (all measurements quoted at the 90% credible level). The probability that the secondary’s mass is below the maximal mass of a neutron star is 89%–96% and 87%–98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are 280−110+110 and 300−100+150Mpc , respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain the spin or tidal deformation of the secondary component for either event. We infer an NSBH merger rate density of 45−33+75Gpc−3yr−1 when assuming that GW200105 and GW200115 are representative of the NSBH population or 130−69+112Gpc−3yr−1 under the assumption of a broader distribution of component masses
    corecore