659 research outputs found

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurement of the CP-Violating Asymmetry Amplitude sin2β\beta

    Get PDF
    We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes

    Self-regulation and self-control in exercise: The strength-energy model

    Get PDF
    Self-regulation is an important component of psychosocial theories of exercise behaviour and lack of self-regulatory skills are associated with low adherence to health-related exercise. This review presents a strength-energy model of self-control as an explanation of self-regulation in exercise contexts. The review will provide impetus for original research aimed at understanding exercise behaviour and help develop recommendations for exercise promotion. In the model, self-control is conceptualized as a global but limited resource. Engaging in actions requiring self-control depletes resources leading to self-regulatory failure. Self-control resource depletion is reduced through rest and frequent training on self-control. The expectation of the need to exert self-control in future leads to a conservation of self-control resources. Proposed mechanisms for self-control resource depletion include changes in physiological markers and blood glucose levels. Based on our review, we propose an integrated model of self-regulation incorporating hypotheses from the strength-energy model with those from traditional psychosocial models of exercise behaviour. Recommendations for future research include incorporating hypotheses from the strength-energy model into theories of self-presentation and interpersonal relations in exercise. Practical recommendations aimed at minimising self-control depletion in exercise include the provision of advice on nutrition and recovery, self-control training and motivational and implementation intention strategies

    de Sitter gauge theories and induced gravities

    Full text link
    Pure de Sitter, anti de Sitter, and orthogonal gauge theories in four-dimensional Euclidean spacetime are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges. The asymptotic freedom and the running of the mass might account for an In\"on\"u-Wigner contraction which induces a breaking of the gauge group to the Lorentz group, while the mass itself is responsible for the coset sector of the gauge field to be identified with the effective vierbein. Furthermore, the resulting local isometries are Lorentzian for the anti de Sitter group and Euclidean for the de Sitter and orthogonal groups.Comment: Sections added. Text reviewed. References added. 14 pages, no figures. Final version to appear in EPJ
    corecore