51 research outputs found
The Puzzling Mutual Orbit of the Binary Trojan Asteroid (624) Hektor
Asteroids with satellites are natural laboratories to constrain the formation
and evolution of our solar system. The binary Trojan asteroid (624) Hektor is
the only known Trojan asteroid to possess a small satellite. Based on W.M. Keck
adaptive optics observations, we found a unique and stable orbital solution,
which is uncommon in comparison to the orbits of other large multiple asteroid
systems studied so far. From lightcurve observations recorded since 1957, we
showed that because the large Req=125-km primary may be made of two joint
lobes, the moon could be ejecta of the low-velocity encounter, which formed the
system. The inferred density of Hektor's system is comparable to the L5 Trojan
doublet (617) Patroclus but due to their difference in physical properties and
in reflectance spectra, both captured Trojan asteroids could have a different
composition and origin.Comment: 13 pages, 3 figures, 2 table
Dynamic heterogeneities in the out-of-equilibrium dynamics of simple spherical spin models
The response of spherical two-spin interaction models, the spherical
ferromagnet (s-FM) and the spherical Sherrington-Kirkpatrick (s-SK) model, is
calculated for the protocol of the so-called nonresonant hole burning
experiment (NHB) for temperatures below the respective critical temperatures.
It is shown that it is possible to select dynamic features in the
out-of-equilibrium dynamics of both models, one of the hallmarks of dynamic
heterogeneities. The behavior of the s-SK model and the s-FM in three
dimensions is very similar, showing dynamic heterogeneities in the long time
behavior, i.e. in the aging regime. The appearence of dynamic heterogeneities
in the s-SK model explicitly demonstrates that these are not necessarily
related to {\it spatial} heterogeneities. For the s-FM it is shown that the
nature of the dynamic heterogeneities changes as a function of dimensionality.
With incresing dimension the frequency selectivity of the NHB diminishes and
the dynamics in the mean-field limit of the s-FM model becomes homogeneous.Comment: 16 pages, 8 figure
High field level crossing studies on spin dimers in the low dimensional quantum spin system NaT(CO)(HO) with T=Ni,Co,Fe,Mn
In this paper we demonstrate the application of high magnetic fields to study
the magnetic properties of low dimensional spin systems. We present a case
study on the series of 2-leg spin-ladder compounds
NaT(CO)(HO) with T = Ni, Co, Fe and Mn. In all
compounds the transition metal is in the high spin configuation. The
localized spin varies from S=1 to 3/2, 2 and 5/2 within this series. The
magnetic properties were examined experimentally by magnetic susceptibility,
pulsed high field magnetization and specific heat measurements. The data are
analysed using a spin hamiltonian description. Although the transition metal
ions form structurally a 2-leg ladder, an isolated dimer model consistently
describes the observations very well. This behaviour can be understood in terms
of the different coordination and superexchange angles of the oxalate ligands
along the rungs and legs of the 2-leg spin ladder. All compounds exhibit
magnetic field driven ground state changes which at very low temperatures lead
to a multistep behaviour in the magnetization curves. In the Co and Fe
compounds a strong axial anisotropy induced by the orbital magnetism leads to a
nearly degenerate ground state and a strongly reduced critical field. We find a
monotonous decrease of the intradimer magnetic exchange if the spin quantum
number is increased
Heterogeneities in systems with quenched disorder
We study the strong role played by structural (quenched) heterogeneities on
static and dynamic properties of the Frustrated Ising Lattice Gas in two
dimensions, already in the liquid phase. Differently from the dynamical
heterogeneities observed in other glass models in this case they may have
infinite lifetime and be spatially pinned by the quenched disorder. We consider
a measure of local frustration, show how it induces the appearance of spatial
heterogeneities and how this reflects in the observed behavior of equilibrium
density distributions and dynamic correlation functions.Comment: 8 page
(16) Psyche: A mesosiderite-like asteroid?
Asteroid (16) Psyche is the target of the NASA Psyche mission. It is
considered one of the few main-belt bodies that could be an exposed
proto-planetary metallic core and that would thus be related to iron
meteorites. Such an association is however challenged by both its near- and
mid-infrared spectral properties and the reported estimates of its density.
Here, we aim to refine the density of (16) Psyche to set further constraints on
its bulk composition and determine its potential meteoritic analog.
We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large
program (ID 199.C-0074). We used the high angular resolution of these
observations to refine Psyche's three-dimensional (3D) shape model and
subsequently its density when combined with the most recent mass estimates. In
addition, we searched for potential companions around the asteroid. We derived
a bulk density of 3.99\,\,0.26\,gcm for Psyche. While such
density is incompatible at the 3-sigma level with any iron meteorites
(7.8\,gcm), it appears fully consistent with that of
stony-iron meteorites such as mesosiderites (density
4.25\,cm). In addition, we found no satellite in our images
and set an upper limit on the diameter of any non-detected satellite of
1460\,\,200}\,m at 150\,km from Psyche (0.2\%\,\,R, the
Hill radius) and 800\,\,200\,m at 2,000\,km (3\%\,\,).
Considering that the visible and near-infrared spectral properties of
mesosiderites are similar to those of Psyche, there is merit to a
long-published initial hypothesis that Psyche could be a plausible candidate
parent body for mesosiderites.Comment: 16 page
Field Theory of Fluctuations in Glasses
We develop a field-theoretical description of dynamical heterogeneities and
fluctuations in supercooled liquids close to the (avoided) MCT singularity.
Using quasi-equilibrium arguments we eliminate time from the description and we
completely characterize fluctuations in the beta regime. We identify different
sources of fluctuations and show that the most relevant ones are associated to
variations of "self-induced disorder" in the initial condition of the dynamics.
It follows that heterogeneites can be describes through a cubic field theory
with an effective random field term. The phenomenon of perturbative dimensional
reduction ensues, well known in random field problems, which implies an upper
critical dimension of the theory equal to 8. We apply our theory to finite size
scaling for mean-field systems and we test its prediction against numerical
simulations
Spatially heterogeneous ages in glassy dynamics
We construct a framework for the study of fluctuations in the nonequilibrium
relaxation of glassy systems with and without quenched disorder. We study two
types of two-time local correlators with the aim of characterizing the
heterogeneous evolution: in one case we average the local correlators over
histories of the thermal noise, in the other case we simply coarse-grain the
local correlators. We explain why the former describe the fingerprint of
quenched disorder when it exists, while the latter are linked to noise-induced
mesoscopic fluctuations. We predict constraints on the pdfs of the fluctuations
of the coarse-grained quantities. We show that locally defined correlations and
responses are connected by a generalized local out-of-equilibrium
fluctuation-dissipation relation. We argue that large-size heterogeneities in
the age of the system survive in the long-time limit. The invariance of the
theory under reparametrizations of time underlies these results. We relate the
pdfs of local coarse-grained quantities and the theory of dynamic random
manifolds. We define a two-time dependent correlation length from the spatial
decay of the fluctuations in the two-time local functions. We present numerical
tests performed on disordered spin models in finite and infinite dimensions.
Finally, we explain how these ideas can be applied to the analysis of the
dynamics of other glassy systems that can be either spin models without
disorder or atomic and molecular glassy systems.Comment: 47 pages, 60 Fig
(704) Interamnia: a transitional object between a dwarf planet and a typical irregular-shaped minor body
Context. With an estimated diameter in the 320–350 km range, (704) Interamnia is the fifth largest main belt asteroid and one of the few bodies that fills the gap in size between the four largest bodies with D > 400 km (Ceres, Vesta, Pallas and Hygiea) and the numerous smaller bodies with diameter ≤200 km. However, despite its large size, little is known about the shape and spin state of Interamnia and, therefore, about its bulk composition and past collisional evolution.
Aims. We aimed to test at what size and mass the shape of a small body departs from a nearly ellipsoidal equilibrium shape (as observed in the case of the four largest asteroids) to an irregular shape as routinely observed in the case of smaller (D ≤ 200 km) bodies.
Methods. We observed Interamnia as part of our ESO VLT/SPHERE large program (ID: 199.C-0074) at thirteen different epochs. In addition, several new optical lightcurves were recorded. These data, along with stellar occultation data from the literature, were fed to the All-Data Asteroid Modeling algorithm to reconstruct the 3D-shape model of Interamnia and to determine its spin state.
Results. Interamnia’s volume-equivalent diameter of 332 ± 6 km implies a bulk density of ρ = 1.98 ± 0.68 g cm−3, which suggests that Interamnia – like Ceres and Hygiea – contains a high fraction of water ice, consistent with the paucity of apparent craters. Our observations reveal a shape that can be well approximated by an ellipsoid, and that is compatible with a fluid hydrostatic equilibrium at the 2σ level.
Conclusions. The rather regular shape of Interamnia implies that the size and mass limit, under which the shapes of minor bodies with a high amount of water ice in the subsurface become irregular, has to be searched among smaller (D ≤ 300 km) less massive (m ≤ 3 × 1019 kg) bodies
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis
Context. Until recently, the 3D shape, and therefore density (when combining the volume estimate with available mass estimates), and surface topography of the vast majority of the largest (D ≥ 100 km) main-belt asteroids have remained poorly constrained. The improved capabilities of the SPHERE/ZIMPOL instrument have opened new doors into ground-based asteroid exploration.
Aims. To constrain the formation and evolution of a representative sample of large asteroids, we conducted a high-angular-resolution imaging survey of 42 large main-belt asteroids with VLT/SPHERE/ZIMPOL. Our asteroid sample comprises 39 bodies with D ≥ 100 km and in particular most D ≥ 200 km main-belt asteroids (20/23). Furthermore, it nicely reflects the compositional diversity present in the main belt as the sampled bodies belong to the following taxonomic classes: A, B, C, Ch/Cgh, E/M/X, K, P/T, S, and V.
Methods. The SPHERE/ZIMPOL images were first used to reconstruct the 3D shape of all targets with both the ADAM and MPCD reconstruction methods. We subsequently performed a detailed shape analysis and constrained the density of each target using available mass estimates including our own mass estimates in the case of multiple systems.
Results. The analysis of the reconstructed shapes allowed us to identify two families of objects as a function of their diameters, namely “spherical” and “elongated” bodies. A difference in rotation period appears to be the main origin of this bimodality. In addition, all but one object (216 Kleopatra) are located along the Maclaurin sequence with large volatile-rich bodies being the closest to the latter. Our results further reveal that the primaries of most multiple systems possess a rotation period of shorter than 6 h and an elongated shape (c/a ≤ 0.65). Densities in our sample range from ~1.3 g cm−3 (87 Sylvia) to ~4.3 g cm−3 (22 Kalliope). Furthermore, the density distribution appears to be strongly bimodal with volatile-poor (ρ ≥ 2.7 g cm−3) and volatile-rich (ρ ≤ 2.2 g cm−3) bodies. Finally, our survey along with previous observations provides evidence in support of the possibility that some C-complex bodies could be intrinsically related to IDP-like P- and D-type asteroids, representing different layers of a same body (C: core; P/D: outer shell). We therefore propose that P/ D-types and some C-types may have the same origin in the primordial trans-Neptunian disk
- …