7 research outputs found

    Anti-NF155 chronic inflammatory demyelinating polyradiculoneuropathy strongly associates to HLA-DRB15

    Get PDF
    Background: The aim of the research is to study the human leukocyte antigen (HLA) class II allele frequencies in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) associated with anti-neurofascin 155 (NF155) antibodies. Methods: Thirteen anti-NF155+ and 35 anti-NF155 negative (anti-NF155neg) CIDP patients were included in a casecontrol study. The frequencies of the DRB1 HLA allele were analyzed in all patients while DQ frequencies were only studied in patients sharing the DRB1*15 allele. In silico HLA-peptide binding and NF155 antigenicity, predictions were performed to analyze overlap between presented peptides and antigenic regions. Results: DRB1*15 alleles (DRB1*15:01 and DRB1*15:02) were present in 10 out of 13 anti-NF155+ CIDP patients and in only 5 out of 35 anti-NF155neg CIDP patients (77 vs 14%; OR = 20, CI = 4.035 to 99.13). DRB1*15 alleles appeared also in significantly higher proportions in anti-NF155+ CIDP than in normal population (77 vs 17%; OR = 16.9, CI = 4.434 to 57. 30). Seven anti-NF155+ CIDP patients (53%) and 5 anti-NF155neg CIDP patients had the DRB1*15:01 allele (OR = 7, p = 0.009), while 3 anti-NF155+ CIDP patients and none of the anti-NF155neg CIDP patients had the DRB1*15:02 allele (OR = 23.6, p = 0.016). In silico analysis of the NF155 peptides binding to DRB1*15 alleles showed significant overlap in the peptides presented by the 15:01 and 15:02 alleles, suggesting functional homology. Conclusions: DRB1*15 alleles are the first strong risk factor associated to a CIDP subset, providing additional evidence that anti-NF155+ CIDP patients constitute a differentiated disease within the CIDP syndrome

    Unmyelinated and myelinated skin nerve damage in Guillain–Barré syndrome: correlation with pain and recovery

    No full text
    We performed a prospective study in 32 patients with Guillain–Barré syndrome (GBS) or its variants to correlate intraepidermal nerve fiber density (IENFD) at the distal leg and lumbar region with pain, autonomic dysfunction, and outcome. In the acute phase, IENFD was reduced in 60% and 61.9% of patients at the distal leg and lumbar region, respectively. In the acute phase, 43.7% of patients complained of neuropathic pain. Their IENFD at the distal leg was significantly lower than in patients without pain (P &lt; .001) and correlated with pain intensity (rs = ?0.51; P = .003). Intriguingly, also patients with the pure motor variant of GBS and pain had low IENFD. At 6-month follow-up, only 3 patients complained of persisting neuropathic pain, whereas 3 patients reported late-onset pain symptoms. IENFD in the acute phase did not predict presence or intensity of pain at 6-month follow-up. IENFD in the acute phase did not correlate with clinical dysautonomia or GBS severity at nadir. However, it correlated with poorer GBS disability score at 6 months (P = .04), GBS score at nadir (P = .03), and clinically probable dysautonomia (P = .004). At 6-month follow-up, median IENFD remained significantly low both at the distal leg (P = .024) and lumbar region (P = .005). Double and triple staining confocal microscope studies showed diffuse damage of myelinated dermal nerves along with axonal degeneration, and mononuclear cell infiltration. Unmyelinated and myelinated skin nerves are diffusely affected in GBS and its variants, including the pure motor form. IENFD declines early, remains low over time, correlates with pain severity in the acute phase, and may predict long-term disability.<br/

    Anti-NF155 chronic inflammatory demyelinating polyradiculoneuropathy strongly associates to HLA-DRB15

    No full text
    Background: The aim of the research is to study the human leukocyte antigen (HLA) class II allele frequencies in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) associated with anti-neurofascin 155 (NF155) antibodies. Methods: Thirteen anti-NF155+ and 35 anti-NF155 negative (anti-NF155neg) CIDP patients were included in a casecontrol study. The frequencies of the DRB1 HLA allele were analyzed in all patients while DQ frequencies were only studied in patients sharing the DRB1*15 allele. In silico HLA-peptide binding and NF155 antigenicity, predictions were performed to analyze overlap between presented peptides and antigenic regions. Results: DRB1*15 alleles (DRB1*15:01 and DRB1*15:02) were present in 10 out of 13 anti-NF155+ CIDP patients and in only 5 out of 35 anti-NF155neg CIDP patients (77 vs 14%; OR = 20, CI = 4.035 to 99.13). DRB1*15 alleles appeared also in significantly higher proportions in anti-NF155+ CIDP than in normal population (77 vs 17%; OR = 16.9, CI = 4.434 to 57. 30). Seven anti-NF155+ CIDP patients (53%) and 5 anti-NF155neg CIDP patients had the DRB1*15:01 allele (OR = 7, p = 0.009), while 3 anti-NF155+ CIDP patients and none of the anti-NF155neg CIDP patients had the DRB1*15:02 allele (OR = 23.6, p = 0.016). In silico analysis of the NF155 peptides binding to DRB1*15 alleles showed significant overlap in the peptides presented by the 15:01 and 15:02 alleles, suggesting functional homology. Conclusions: DRB1*15 alleles are the first strong risk factor associated to a CIDP subset, providing additional evidence that anti-NF155+ CIDP patients constitute a differentiated disease within the CIDP syndrome

    Additional file 1: of Anti-NF155 chronic inflammatory demyelinating polyradiculoneuropathy strongly associates to HLA-DRB15

    No full text
    This excel file is composed by five different tables. Tables S1 and S2 display all peptides that the IEDB tool predicted to bind to DRB1*15:01 and DRB1*15:02 alleles, respectively, ordered by predicted binding strenght. Table S3. displays the 10 peptides binding with highest scores to DRB1*15 alleles as calculated by the ProPred tool. Table S4. displays all NF155 peptides ordered by their calculated antigenicity according to the Kolaskar and Tongaonkar antigenicity scale. Table S5. displays a summary of the findings relating the antigenicity scale findings with HLA-peptide prediction results with both IEDB and ProPred methods. (XLS 893 kb

    Environmental liquid scintillation analysis

    No full text
    corecore